Suppr超能文献

解读糖尿病多组学:揭示疾病机制与推进个性化治疗

Illuminating diabetes multi-omics: Unraveling disease mechanisms and advancing personalized therapy.

作者信息

Song Chen-Meng, Lin Ta-Hui, Huang Hou-Tan, Yao Jeng-Yuan

机构信息

School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.

Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, Fujian Province, China.

出版信息

World J Diabetes. 2025 Jul 15;16(7):106218. doi: 10.4239/wjd.v16.i7.106218.

Abstract

Diabetes mellitus (DM) comprises distinct subtypes-including type 1 DM, type 2 DM, and gestational DM - all characterized by chronic hyperglycemia and substantial morbidity. Conventional diagnostic and therapeutic strategies often fall short in addressing the complex, multifactorial nature of DM. This review explores how multi-omics integration enhances our mechanistic understanding of DM and informs emerging personalized therapeutic approaches. We consolidated genomic, transcriptomic, proteomic, metabolomic, and microbiomic data from major databases and peer-reviewed publications (2015-2025), with an emphasis on clinical relevance. Multi-omics investigations have identified convergent molecular networks underlying β-cell dysfunction, insulin resistance, and diabetic complications. The combination of metabolomics and microbiomics highlights critical interactions between metabolic intermediates and gut dysbiosis. Novel biomarkers facilitate early detection of DM and its complications, while single-cell multi-omics and machine learning further refine risk stratification. By dissecting DM heterogeneity more precisely, multi-omics integration enables targeted interventions and preventive strategies. Future efforts should focus on data harmonization, ethical considerations, and real-world validation to fully leverage multi-omics in addressing the global DM burden.

摘要

糖尿病(DM)包括不同的亚型,包括1型糖尿病、2型糖尿病和妊娠糖尿病,所有这些亚型的特征都是慢性高血糖和严重的发病率。传统的诊断和治疗策略往往不足以应对糖尿病复杂的多因素性质。本综述探讨了多组学整合如何增强我们对糖尿病的机制理解,并为新兴的个性化治疗方法提供信息。我们整合了来自主要数据库和同行评审出版物(2015 - 2025年)的基因组、转录组、蛋白质组、代谢组和微生物组数据,重点关注临床相关性。多组学研究已经确定了β细胞功能障碍、胰岛素抵抗和糖尿病并发症背后的趋同分子网络。代谢组学和微生物组学的结合突出了代谢中间体与肠道生态失调之间的关键相互作用。新型生物标志物有助于早期检测糖尿病及其并发症,而单细胞多组学和机器学习进一步优化风险分层。通过更精确地剖析糖尿病的异质性,多组学整合能够实现有针对性的干预和预防策略。未来的工作应集中在数据协调、伦理考量和真实世界验证上,以充分利用多组学来应对全球糖尿病负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d9b/12278082/0c3fa0c34ae3/wjd-16-7-106218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验