College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, P. R. China.
Chem Commun (Camb). 2023 May 23;59(42):6314-6334. doi: 10.1039/d3cc00712j.
Recently, the increasing concerns regarding environmental and energy-related issues due to the use of fossil fuels have triggered extensive research on sustainable electrochemical energy storage and conversion (EESC). In this case, covalent triazine frameworks (CTFs) possess a large surface area, tailorable conjugated structures, electron donating-accepting/conducting moieties, and excellent chemical and thermal stabilities. These merits make them leading candidates for EESC. However, their poor electrical conductivity impedes electron and ion conduction, leading to unsatisfactory electrochemical performances, which limit their commercial applications. Thus, to overcome these challenges, CTF-based nanocomposites and their derivatives such as heteroatom-doped porous carbons, which inherit most of the merits of pristine CTFs, lead to excellent performances in the field of EESC. In this review, initially, we briefly highlight the existing strategies for the synthesis of CTFs with application-targeted properties. Next, we review the contemporary progress of CTFs and their derivatives related to electrochemical energy storage (supercapacitors, alkali-ion batteries, lithium-sulfur batteries, ) and conversion (oxygen reduction/evolution reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, ). Finally, we discuss perspectives on current challenges and recommendations for the further development of CTF-based nanomaterials in burgeoning EESC research.
最近,由于化石燃料的使用而引起的环境和能源相关问题的日益关注,引发了对可持续电化学储能和转换(EESC)的广泛研究。在这种情况下,共价三嗪框架(CTFs)具有大的表面积、可调节的共轭结构、供电子-受电子/传导部分以及优异的化学和热稳定性。这些优点使它们成为 EESC 的首选。然而,其较差的导电性阻碍了电子和离子的传导,导致电化学性能不佳,限制了它们的商业应用。因此,为了克服这些挑战,基于 CTF 的纳米复合材料及其衍生物,如杂原子掺杂多孔碳,继承了原始 CTF 的大部分优点,在 EESC 领域表现出优异的性能。在这篇综述中,我们首先简要介绍了具有应用目标特性的 CTFs 的现有合成策略。接下来,我们回顾了 CTFs 及其衍生物在电化学储能(超级电容器、碱离子电池、锂硫电池等)和转换(氧还原/析反应、析氢反应、二氧化碳还原反应等)方面的最新进展。最后,我们讨论了当前挑战的观点,并对基于 CTF 的纳米材料在新兴 EESC 研究中的进一步发展提出了建议。