Physical Science and Engineering Division, King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia.
Department of Geosciences, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
Sci Rep. 2023 May 3;13(1):7179. doi: 10.1038/s41598-023-33203-1.
Global traveltime modeling is an essential component of modern seismological studies with a whole gamut of applications ranging from earthquake source localization to seismic velocity inversion. Emerging acquisition technologies like distributed acoustic sensing (DAS) promise a new era of seismological discovery by allowing a high-density of seismic observations. Conventional traveltime computation algorithms are unable to handle virtually millions of receivers made available by DAS arrays. Therefore, we develop GlobeNN-a neural network based traveltime function that can provide seismic traveltimes obtained from the cached realistic 3-D Earth model. We train a neural network to estimate the traveltime between any two points in the global mantle Earth model by imposing the validity of the eikonal equation through the loss function. The traveltime gradients in the loss function are computed efficiently using automatic differentiation, while the P-wave velocity is obtained from the vertically polarized P-wave velocity of the GLAD-M25 model. The network is trained using a random selection of source and receiver pairs from within the computational domain. Once trained, the neural network produces traveltimes rapidly at the global scale through a single evaluation of the network. As a byproduct of the training process, we obtain a neural network that learns the underlying velocity model and, therefore, can be used as an efficient storage mechanism for the huge 3-D Earth velocity model. These exciting features make our proposed neural network based global traveltime computation method an indispensable tool for the next generation of seismological advances.
全球走时建模是现代地震学研究的一个重要组成部分,具有广泛的应用,从震源定位到地震波速度反演。新兴的采集技术,如分布式声学传感(DAS),通过允许高密度的地震观测,有望开创地震学发现的新时代。传统的走时计算算法无法处理 DAS 阵列提供的几乎数百万个接收器。因此,我们开发了 GlobeNN——一种基于神经网络的走时函数,可以提供从缓存的真实 3D 地球模型中获得的地震走时。我们通过在损失函数中施加测地方程的有效性来训练神经网络,以估计全球地幔地球模型中任意两点之间的走时。在损失函数中的走时梯度通过自动微分有效地计算,而 P 波速度则从 GLAD-M25 模型的垂直极化 P 波速度获得。网络通过在计算域内随机选择源和接收器对进行训练。一旦训练完成,神经网络就可以通过对网络的单次评估快速生成全球范围内的走时。作为训练过程的副产品,我们得到了一个学习基本速度模型的神经网络,因此可以用作巨大的 3D 地球速度模型的有效存储机制。这些令人兴奋的特点使得我们提出的基于神经网络的全球走时计算方法成为下一代地震学进步不可或缺的工具。