Sethian J A
Department of Mathematics, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1591-5. doi: 10.1073/pnas.93.4.1591.
A fast marching level set method is presented for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential equation for a propagating level set function and use techniques borrowed from hyperbolic conservation laws. Topological changes, corner and cusp development, and accurate determination of geometric properties such as curvature and normal direction are naturally obtained in this setting. This paper describes a particular case of such methods for interfaces whose speed depends only on local position. The technique works by coupling work on entropy conditions for interface motion, the theory of viscosity solutions for Hamilton-Jacobi equations, and fast adaptive narrow band level set methods. The technique is applicable to a variety of problems, including shape-from-shading problems, lithographic development calculations in microchip manufacturing, and arrival time problems in control theory.
本文提出了一种用于单调推进前沿的快速行进水平集方法,该方法产生了一种求解程函方程的极其快速的方案。水平集方法是用于计算传播前沿位置的数值技术。它们依赖于传播水平集函数的初值偏微分方程,并使用从双曲守恒律借鉴的技术。在这种情况下,自然可以得到拓扑变化、角点和尖点的发展,以及诸如曲率和法线方向等几何特性的精确确定。本文描述了此类方法的一种特殊情况,适用于速度仅取决于局部位置的界面。该技术通过将界面运动的熵条件、哈密顿 - 雅可比方程的粘性解理论以及快速自适应窄带水平集方法相结合来工作。该技术适用于各种问题,包括从阴影恢复形状问题、微芯片制造中的光刻显影计算以及控制理论中的到达时间问题。