Suppr超能文献

基于改进鲸鱼优化算法的支持向量机对眼动数据分类的研究

[Research on eye movement data classification using support vector machine with improved whale optimization algorithm].

作者信息

Shen Yinhong, Zhang Chang, Yang Lin, Li Yuanyuan, Zheng Xiujuan

机构信息

College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China.

Mental Health Center of the West China Hospital, Sichuan University, Chengdu 610041, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Apr 25;40(2):335-342. doi: 10.7507/1001-5515.202204066.

Abstract

When performing eye movement pattern classification for different tasks, support vector machines are greatly affected by parameters. To address this problem, we propose an algorithm based on the improved whale algorithm to optimize support vector machines to enhance the performance of eye movement data classification. According to the characteristics of eye movement data, this study first extracts 57 features related to fixation and saccade, then uses the ReliefF algorithm for feature selection. To address the problems of low convergence accuracy and easy falling into local minima of the whale algorithm, we introduce inertia weights to balance local search and global search to accelerate the convergence speed of the algorithm and also use the differential variation strategy to increase individual diversity to jump out of local optimum. In this paper, experiments are conducted on eight test functions, and the results show that the improved whale algorithm has the best convergence accuracy and convergence speed. Finally, this paper applies the optimized support vector machine model of the improved whale algorithm to the task of classifying eye movement data in autism, and the experimental results on the public dataset show that the accuracy of the eye movement data classification of this paper is greatly improved compared with that of the traditional support vector machine method. Compared with the standard whale algorithm and other optimization algorithms, the optimized model proposed in this paper has higher recognition accuracy and provides a new idea and method for eye movement pattern recognition. In the future, eye movement data can be obtained by combining it with eye trackers to assist in medical diagnosis.

摘要

在对不同任务进行眼动模式分类时,支持向量机受参数影响较大。为解决这一问题,我们提出一种基于改进鲸鱼算法的算法来优化支持向量机,以提高眼动数据分类性能。根据眼动数据的特点,本研究首先提取57个与注视和扫视相关的特征,然后使用ReliefF算法进行特征选择。为解决鲸鱼算法收敛精度低和易陷入局部极小值的问题,我们引入惯性权重来平衡局部搜索和全局搜索,以加快算法的收敛速度,还使用差分变异策略增加个体多样性以跳出局部最优。本文对八个测试函数进行了实验,结果表明改进后的鲸鱼算法具有最佳的收敛精度和收敛速度。最后,本文将改进鲸鱼算法优化后的支持向量机模型应用于自闭症眼动数据分类任务,在公开数据集上的实验结果表明,本文的眼动数据分类准确率与传统支持向量机方法相比有了很大提高。与标准鲸鱼算法和其他优化算法相比,本文提出的优化模型具有更高的识别准确率,为眼动模式识别提供了新的思路和方法。未来,可以通过与眼动仪结合获取眼动数据,辅助医学诊断。

相似文献

1
[Research on eye movement data classification using support vector machine with improved whale optimization algorithm].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Apr 25;40(2):335-342. doi: 10.7507/1001-5515.202204066.
3
Forecast of E-Commerce Transactions Trend Using Integration of Enhanced Whale Optimization Algorithm and Support Vector Machine.
Comput Intell Neurosci. 2021 Jul 19;2021:9931521. doi: 10.1155/2021/9931521. eCollection 2021.
5
Multistrategy Improved Whale Optimization Algorithm and Its Application.
Comput Intell Neurosci. 2022 May 27;2022:3418269. doi: 10.1155/2022/3418269. eCollection 2022.
7
Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm.
Sensors (Basel). 2023 Apr 14;23(8):3988. doi: 10.3390/s23083988.
8
An improved multi-strategy beluga whale optimization for global optimization problems.
Math Biosci Eng. 2023 Jun 9;20(7):13267-13317. doi: 10.3934/mbe.2023592.

本文引用的文献

1
[A Gaussian mixture-hidden Markov model of human visual behavior].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):512-519. doi: 10.7507/1001-5515.202008022.
2
Eye movement patterns in Iranian dyslexic children compared to non-dyslexic children.
Auris Nasus Larynx. 2021 Aug;48(4):594-600. doi: 10.1016/j.anl.2020.11.012. Epub 2020 Nov 28.
3
To covet what we see: Autistic traits modulate the relationship between looking and choosing.
Autism Res. 2021 Feb;14(2):289-300. doi: 10.1002/aur.2349. Epub 2020 Jul 20.
4
Eye movement abnormalities and their association with cognitive impairments in schizophrenia.
Schizophr Res. 2019 Jul;209:255-262. doi: 10.1016/j.schres.2018.12.051. Epub 2019 Jan 17.
5
A ReliefF-SVM-based method for marking dopamine-based disease characteristics: A study on SWEDD and Parkinson's disease.
Behav Brain Res. 2019 Jan 1;356:400-407. doi: 10.1016/j.bbr.2018.09.003. Epub 2018 Sep 9.
7
Threats to the validity of eye-movement research in psychology.
Behav Res Methods. 2018 Aug;50(4):1645-1656. doi: 10.3758/s13428-017-0998-z.
9
What's on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths.
Front Aging Neurosci. 2014 Nov 11;6:312. doi: 10.3389/fnagi.2014.00312. eCollection 2014.
10
Face to face: visual scanpath evidence for abnormal processing of facial expressions in social phobia.
Psychiatry Res. 2004 Jun 30;127(1-2):43-53. doi: 10.1016/j.psychres.2004.02.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验