基于改进鲸鱼优化算法的室内机器人路径规划

Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm.

机构信息

School of Mechanical Engineering, Xinjiang University, Urumqi 830039, China.

出版信息

Sensors (Basel). 2023 Apr 14;23(8):3988. doi: 10.3390/s23083988.

Abstract

An improved whale optimization algorithm is proposed to solve the problems of the original algorithm in indoor robot path planning, which has slow convergence speed, poor path finding ability, low efficiency, and is easily prone to falling into the local shortest path problem. First, an improved logistic chaotic mapping is applied to enrich the initial population of whales and improve the global search capability of the algorithm. Second, a nonlinear convergence factor is introduced, and the equilibrium parameter A is changed to balance the global and local search capabilities of the algorithm and improve the search efficiency. Finally, the fused Corsi variance and weighting strategy perturbs the location of the whales to improve the path quality. The improved logical whale optimization algorithm (ILWOA) is compared with the WOA and four other improved whale optimization algorithms through eight test functions and three raster map environments for experiments. The results show that ILWOA has better convergence and merit-seeking ability in the test function. In the path planning experiments, the results are better than other algorithms when comparing three evaluation criteria, which verifies that the path quality, merit-seeking ability, and robustness of ILWOA in path planning are improved.

摘要

提出了一种改进的鲸鱼优化算法,以解决原始算法在室内机器人路径规划中存在的收敛速度慢、寻路能力差、效率低且容易陷入局部最短路径问题。首先,应用改进的 logistic 混沌映射来丰富鲸鱼的初始种群,提高算法的全局搜索能力。其次,引入非线性收敛因子,改变平衡参数 A,以平衡算法的全局和局部搜索能力,提高搜索效率。最后,融合 Corsi 方差和加权策略来扰动鲸鱼的位置,以提高路径质量。通过 8 个测试函数和 3 个栅格地图环境,将改进的逻辑鲸鱼优化算法(ILWOA)与 WOA 和其他 4 种改进的鲸鱼优化算法进行了比较实验。结果表明,ILWOA 在测试函数中具有更好的收敛性和寻优能力。在路径规划实验中,通过比较 3 个评价标准,ILWOA 的结果优于其他算法,验证了 ILWOA 在路径规划中的路径质量、寻优能力和鲁棒性得到了提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac1/10143162/0be0291066b7/sensors-23-03988-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索