Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States.
Acc Chem Res. 2023 May 16;56(10):1228-1238. doi: 10.1021/acs.accounts.3c00112. Epub 2023 May 4.
ConspectusProspective applications involving the electrification of industrial chemical processes and electrical energy to chemical fuels interconversion as part of the energy transition to renewable energy sources have led to an increasing need for highly tailored nanostructures immobilized on electrode surfaces. Control of surface facet structure across material compositions is of particular importance for ensuring performance in such applications. Colloidal methods for producing shaped nanoparticles in solution are abundant, particularly for noble metals. However, significant technical challenges remain with respect to rationally designing syntheses for the novel compositions and morphologies required to sustainably enable the above technological advances as well as in developing methods for uniformly and reproducibly dispersing colloidally synthesized nanostructures on electrode surfaces. The direct synthesis of nanoparticles on electrodes using chemical reduction approaches remains challenging, though recent advances have been made for certain materials and structures. Electrochemical nanoparticle synthesis─where an applied current or potential instead of a chemical reducing agent drives the redox chemistry of nanoparticle growth─is poised to play an important role in advancing the fabrication of nanostructured electrodes. Specifically, this Account focuses on the colloidal-inspired design of electrochemical syntheses and the interplay between colloidal and electrochemical approaches in terms of understanding the fundamental chemical reaction mechanisms of nanoparticle growth. An initial discussion of the development of electrochemical particle syntheses that incorporate colloidal synthetic tools highlights the promising emergent capabilities that result from blending these two approaches. Furthermore, it demonstrates how existing colloidal syntheses can be directly translated to electrochemical growth on a conductive surface using real-time electrochemical measurements of the chemistry of the growth solution. Measuring the open circuit potential of a colloidal synthesis over time and then replicating that measured potential during electrochemical deposition leads to the formation of the same nanoparticle shape. These open circuit and chronopotentiometric measurements also give fundamental insight about the changing chemical environment during particle growth. We highlight how these time-resolved electrochemical measurements, as well as correlated spectroelectrochemical monitoring of particle formation kinetics, enable the extraction of information regarding mechanisms of particle formation that is difficult to obtain using other approaches. This information can be translated back into colloidal synthesis design via a directed, intentional approach to synthetic development. We additionally explore the added flexibility of synthetic design for methods involving electrochemically driven reduction as compared to the use of chemical reducing agents. The Account concludes with a brief perspective on potential future directions in both fundamental studies and synthetic development enabled by this emerging integrated electrochemical approach.
概述
作为向可再生能源过渡的能源转化的一部分,涉及工业化学过程电气化和电能向化学燃料转化的前瞻性应用,导致对固定在电极表面上的高度定制纳米结构的需求不断增加。控制材料组成的表面面结构对于确保此类应用中的性能至关重要。在溶液中生产形状纳米粒子的胶体方法很多,特别是对于贵金属。然而,在合理设计用于可持续实现上述技术进步所需的新型组成和形态的合成以及开发均匀且可重复地在电极表面上分散胶体合成纳米结构的方法方面,仍然存在重大技术挑战。使用化学还原方法直接在电极上合成纳米粒子仍然具有挑战性,尽管最近在某些材料和结构方面取得了进展。电化学纳米粒子合成-其中施加的电流或电势而不是化学还原剂驱动纳米粒子生长的氧化还原化学-有望在推进纳米结构电极的制造中发挥重要作用。具体而言,本账户重点介绍了受胶体启发的电化学合成设计以及胶体和电化学方法之间的相互作用,以了解纳米粒子生长的基本化学反应机制。首先讨论了包含胶体合成工具的电化学颗粒合成的发展,突出了混合这两种方法所带来的有前途的新兴能力。此外,它展示了如何使用生长溶液的实时电化学测量直接将现有的胶体合成转化为导电表面上的电化学生长。随着时间的推移测量胶体合成的开路电位,然后在电化学沉积过程中复制该测量电位,导致形成相同的纳米颗粒形状。这些开路和计时电位测量还提供了有关颗粒生长过程中化学环境不断变化的基本见解。我们强调了这些时间分辨的电化学测量以及相关的粒子形成动力学光谱电化学监测如何使我们能够提取有关粒子形成机制的信息,而这些信息很难使用其他方法获得。通过直接的、有针对性的合成开发方法,可以将这些信息转化回胶体合成设计中。我们还探讨了与使用化学还原剂相比,电化学驱动还原方法在合成设计方面的附加灵活性。该账户以对这种新兴综合电化学方法所带来的基础研究和合成发展的潜在未来方向的简要展望结束。