Suppr超能文献

基于深度表格模型的个体化质量保证失败预测。

Patient-specific quality assurance failure prediction with deep tabular models.

机构信息

University of Washington, Seattle WA, United States of America.

出版信息

Biomed Phys Eng Express. 2023 May 12;9(4). doi: 10.1088/2057-1976/acd255.

Abstract

Patient-specific quality assurance (PSQA) failures in radiotherapy can cause a delay in patient care and increase the workload and stress of staff. We developed a tabular transformer model based directly on the multi-leaf collimator (MLC) leaf positions (without any feature engineering) to predict IMRT PSQA failure in advance. This neural model provides an end-to-end differentiable map from MLC leaf positions to the probability of PSQA plan failure, which could be useful for regularizing gradient-based leaf sequencing optimization algorithms and generating a plan that is more likely to pass PSQA.We retrospectively collected DICOM RT PLAN files of 968 patient plans treated with volumetric arc therapy. We constructed a beam-level tabular dataset with 1873 beams as samples and MLC leaf positions as features. We trained an attention-based neural network FT-Transformer to predict the ArcCheck-based PSQA gamma pass rates. In addition to the regression task, we evaluated the model in the binary classification context predicting the pass or fail of PSQA. The performance was compared to the results of the two leading tree ensemble methods (CatBoost and XGBoost) and a non-learned method based on mean-MLC-gap.The FT-Transformer model achieves 1.44% Mean Absolute Error (MAE) in the regression task of the gamma pass rate prediction and performs on par with XGBoost (1.53 % MAE) and CatBoost (1.40 % MAE). In the binary classification task of PSQA failure prediction, FT-Transformer achieves 0.85 ROC AUC (compared to the mean-MLC-gap complexity metric achieving 0.72 ROC AUC). Moreover, FT-Transformer, CatBoost, and XGBoost all achieve 80% true positive rate while keeping the false positive rate under 20%.We demonstrated that reliable PSQA failure predictors can be successfully developed based solely on MLC leaf positions. FT-Transformer offers an unprecedented benefit of providing an end-to-end differentiable map from MLC leaf positions to the probability of PSQA failure.

摘要

患者特异性质量保证(PSQA)失败在放射治疗中会导致患者治疗延迟,并增加工作人员的工作量和压力。我们开发了一种基于多叶准直器(MLC)叶片位置的表格转换器模型(无需任何特征工程),以便提前预测调强放疗 PSQA 失败。该神经模型提供了从 MLC 叶片位置到 PSQA 计划失败概率的端到端可区分映射,这对于正则化基于梯度的叶片排序优化算法和生成更有可能通过 PSQA 的计划可能很有用。

我们回顾性地收集了 968 例容积弧形治疗患者计划的 DICOM RT PLAN 文件。我们构建了一个具有 1873 个光束作为样本和 MLC 叶片位置作为特征的基于束的表格数据集。我们训练了一个基于注意力的神经网络 FT-Transformer 来预测基于 ArcCheck 的 PSQA 伽马通过率。除了回归任务外,我们还在二进制分类上下文中评估了模型,预测 PSQA 的通过或失败。性能与两种领先的树集成方法(CatBoost 和 XGBoost)和基于平均-MLC-间隙的非学习方法进行了比较。

FT-Transformer 模型在伽马通过率预测的回归任务中实现了 1.44%的平均绝对误差(MAE),与 XGBoost(1.53% MAE)和 CatBoost(1.40% MAE)相当。在 PSQA 失败预测的二进制分类任务中,FT-Transformer 实现了 0.85 的 ROC AUC(与平均-MLC-间隙复杂度度量相比,实现了 0.72 的 ROC AUC)。此外,FT-Transformer、CatBoost 和 XGBoost 都实现了 80%的真阳性率,同时将假阳性率保持在 20%以下。

我们证明了仅基于 MLC 叶片位置就可以成功开发可靠的 PSQA 失败预测器。FT-Transformer 提供了一个前所未有的优势,即提供了从 MLC 叶片位置到 PSQA 失败概率的端到端可区分映射。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验