Suppr超能文献

深度学习在容积调强弧形治疗个体化质量保证中的应用:预测准确性和成本敏感分类性能。

Deep learning for patient-specific quality assurance of volumetric modulated arc therapy: Prediction accuracy and cost-sensitive classification performance.

机构信息

Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Phys Med. 2024 Sep;125:104500. doi: 10.1016/j.ejmp.2024.104500. Epub 2024 Aug 26.

Abstract

PURPOSE

To evaluate a deep learning model's performance in predicting and classifying patient-specific quality assurance (PSQA) results for volumetric modulated arc therapy (VMAT), aiming to streamline PSQA workflows and reduce the onsite measurement workload.

METHODS

A total of 761 VMAT plans were analyzed using 3D-MResNet to process multileaf collimator images and monitor unit data, with the gamma passing rate (GPR) as the output. Thresholds for the predicted GPR (Th-p) and measured GPR (Th-m) were established to aid in PSQA decision-making, using cost curves and error rates to assess classification performance.

RESULTS

The mean absolute errors of the model for the test set were 1.63 % and 2.38 % at 3 %/2 mm and 2 %/2 mm, respectively. For the classification of the PSQA results, Th-m was 88.3 % at 2 %/2 mm and 93.3 % at 3 %/2 mm. The lowest cost-sensitive error rates of 0.0127 and 0.0925 were obtained when Th-p was set as 91.2 % at 2 %/2 mm and 96.4 % at 3 %/2 mm, respectively. Additionally, the 2 %/2 mm classifier also achieved a lower total expected cost of 0.069 compared with 0.110 for the 3 %/2 mm classifier. The deep learning classifier under the 2 %/2 mm gamma criterion had a sensitivity and specificity of 100 % (10/10) and 83.5 % (167/200), respectively, for the test set.

CONCLUSIONS

The developed 3D-MResNet model can accurately predict and classify PSQA results based on VMAT plans. The introduction of a deep learning model into the PSQA workflow has considerable potential for improving the VMAT PSQA process and reducing workloads.

摘要

目的

评估深度学习模型在预测和分类容积调强弧形治疗(VMAT)患者特定质量保证(PSQA)结果方面的性能,旨在简化 PSQA 工作流程并减少现场测量工作量。

方法

使用 3D-MResNet 处理多叶准直器图像和监测器单元数据,对 761 个 VMAT 计划进行分析,以伽马通过率(GPR)作为输出。建立预测 GPR(Th-p)和实测 GPR(Th-m)的阈值,以帮助 PSQA 决策,使用成本曲线和误差率评估分类性能。

结果

模型对测试集的平均绝对误差分别为 3%/2mm 时为 1.63%和 2.38%,2%/2mm 时为 1.39%和 2.04%。对于 PSQA 结果的分类,Th-m 在 2%/2mm 时为 88.3%,在 3%/2mm 时为 93.3%。当 Th-p 设置为 2%/2mm 时为 91.2%和 3%/2mm 时为 96.4%时,获得了最低的成本敏感错误率 0.0127 和 0.0925。此外,2%/2mm 分类器的总期望成本也比 3%/2mm 分类器低 0.069,为 0.069。在 2%/2mm 伽马标准下,深度学习分类器对测试集的灵敏度和特异性分别为 100%(10/10)和 83.5%(167/200)。

结论

所开发的 3D-MResNet 模型可以根据 VMAT 计划准确预测和分类 PSQA 结果。将深度学习模型引入 PSQA 工作流程具有很大的潜力,可以改善 VMAT PSQA 流程并减少工作量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验