Chen Mingyue, Zhou Wenda, Ye Kun, Yuan Cailei, Zhu Mengyuan, Yu Hao, Yang Hongzhou, Huang He, Wu Yanfei, Zhang Jingyan, Zheng Xinqi, Shen Jianxin, Wang Xiao, Wang Shouguo
School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Small. 2023 Sep;19(38):e2300122. doi: 10.1002/smll.202300122. Epub 2023 May 5.
As a clean and effective approach, the introduction of external magnetic fields to improve the performance of catalysts has attracted extensive attention. Owing to its room-temperature ferromagnetism, chemical stability, and earth abundance, VSe is expected to be a promising and cost-effective ferromagnetic electrocatalyst for the accomplishment of high-efficient spin-related OER kinetics. In this work, a facile pulsed laser deposition (PLD) method combined with rapid thermal annealing (RTA) treatment is used to successfully confine monodispersed 1T-VSe nanoparticles in amorphous carbon matrix. As expected, with external magnetic fields of 800 mT stimulation, the confined 1T-VSe nanoparticles exhibit highly efficient oxygen evolution reaction (OER) catalytic activity with an overpotential of 228 mV for 10 mA cm and remarkable durability without deactivation after >100 h OER operation. The experimental results together with theoretical calculations illustrate that magnetic fields can facilitate the surface charge transfer dynamics of 1T-VSe , and modify the adsorption-free energy of *OOH, thus finally improving the intrinsic activity of the catalysts. This work realizes the application of ferromagnetic VSe electrocatalyst in highly efficient spin-dependent OER kinetics, which is expected to promote the application of transition metal chalcogenides (TMCs) in external magnetic field-assisted electrocatalysis.
作为一种清洁有效的方法,引入外部磁场以提高催化剂性能已引起广泛关注。由于其室温铁磁性、化学稳定性和地球丰度,VSe有望成为一种有前景且具有成本效益的铁磁电催化剂,以实现高效的自旋相关析氧反应(OER)动力学。在这项工作中,采用一种简便的脉冲激光沉积(PLD)方法与快速热退火(RTA)处理相结合,成功地将单分散的1T-VSe纳米颗粒限制在非晶碳基质中。正如预期的那样,在800 mT的外部磁场刺激下,受限的1T-VSe纳米颗粒表现出高效的析氧反应(OER)催化活性,在10 mA cm时过电位为228 mV,并且具有出色的耐久性,在>100 h的OER运行后不会失活。实验结果与理论计算表明,磁场可以促进1T-VSe的表面电荷转移动力学,并改变*OOH的吸附自由能,从而最终提高催化剂的本征活性。这项工作实现了铁磁VSe电催化剂在高效自旋依赖OER动力学中的应用,有望推动过渡金属硫族化物(TMCs)在外部磁场辅助电催化中的应用。