Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China.
Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China.
Int J Oncol. 2023 Jun;62(6). doi: 10.3892/ijo.2023.5519. Epub 2023 May 5.
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
癌症-睾丸抗原(CTA)是一种公认的用于癌症诊断和治疗的最佳靶标文库。大多数 CTA 位于 X 染色体上,并聚集在大型基因家族中,如黑色素瘤抗原、滑膜肉瘤 X 和 G 抗原家族。CTA 亚家族的成员通常在肿瘤组织中共同表达,具有相似的结构特征和生物学功能。由于癌症疫苗被推荐用于诱导特异性抗肿瘤反应,因此 CTA,特别是 CTA 亚家族,广泛用于癌症疫苗的设计。迄今为止,已普遍使用 DNA、mRNA 和肽疫苗来产生肿瘤特异性 CTA 并诱导抗癌作用。尽管在临床前研究中取得了有希望的结果,但基于 CTA 的疫苗在临床试验中的抗肿瘤疗效有限,这可能部分归因于免疫原性弱、抗原传递和呈递过程的效率低以及抑制性免疫微环境。最近,纳米材料的发展增强了癌症接种级联反应,提高了抗肿瘤性能并减少了脱靶效应。本研究深入探讨了 CTA 亚家族的结构特征和生物功能,总结了基于 CTA 的疫苗平台的设计和利用,并为开发基于纳米材料的 CTA 靶向疫苗提供了建议。