Department of Chemistry, University of Tennessee - Knoxville, Knoxville, TN 37996, USA; Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA.
Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA.
J Inorg Biochem. 2023 Aug;245:112228. doi: 10.1016/j.jinorgbio.2023.112228. Epub 2023 Apr 24.
The electron paramagnetic resonance (EPR) investigation of mononuclear cis- and trans-(L1O)MoOCl complexes [L1OH = bis(3,5-dimethylpyrazolyl)-3-tert-butyl-2-hydroxy-5-methylphenyl)methane] reveals a significant difference in their spin Hamiltonian parameters which reflect different equatorial and axial ligand fields created by the heteroscorpionate donor atoms. Density functional theory (DFT) was used to calculate the values of principal components and relative orientations of the g and A tensors, and the molecular framework in four pairs of isomeric mononuclear oxo‑molybdenum(V) complexes (cis- and trans-(L1O)MoOCl, cis,cis- and cis,trans-(L-NS)MoOCl [L-NSH = N,N'-dimethyl-N,N'-bis(mercaptophenyl)ethylenediamine], cis,cis- and cis,trans-(L-NS)MoO(SCN), and cis- and trans-[(dt)MoO(OMe)] [dtH = 2,3-dimercapto-2-butene]). Scalar relativistic DFT calculations were conducted using three different exchange-correlation functionals. It was found that the use of hybrid exchange-correlation functional with 25% of the Hartree-Fock exchange leads to the best quantitative agreement between theory and experiment. A simplified ligand-field approach was used to analyze the influence of the ligand fields in all cis- and trans-isomers on energies and contributions of molybdenum d-orbital manifold to g and A tensors and relative orientations. Specifically, contributions that originated from the spin-orbit coupling of the d, d, and d orbitals into the ground state have been discussed. The new findings are discussed in the context of the experimental data of mononuclear molybdoenzyme, DMSO reductase.
单核顺式和反式-(L1O)MoOCl 配合物的电子顺磁共振(EPR)研究[L1OH=双(3,5-二甲基吡唑基)-3-叔丁基-2-羟基-5-甲基苯基)甲烷]揭示了它们的自旋哈密顿参数有显著差异,这反映了杂冠醚给体原子所产生的不同的赤道和轴向配体场。密度泛函理论(DFT)用于计算主成分和 g 和 A 张量的相对取向以及四个对同核氧-钼(V)配合物(顺式和反式-(L1O)MoOCl、顺式,顺式和顺式,反式-(L-NS)MoOCl[L-NSH=N,N'-二甲基-N,N'-双(巯基苯基)乙二胺],顺式,顺式和顺式,反式-(L-NS)MoO(SCN)和顺式和反式-[(dt)MoO(OME)] [dtH=2,3-二巯基-2-丁烯])的分子框架的数值。使用三种不同的交换相关泛函进行了标量相对论 DFT 计算。发现使用含有 25%哈特ree-fock 交换的混合交换相关泛函可以在理论和实验之间获得最佳的定量一致性。简化的配体场方法用于分析所有顺式和反式异构体中配体场对能量和钼 d 轨道简并对 g 和 A 张量和相对取向的贡献的影响。特别讨论了源自 d、d 和 d 轨道的自旋轨道耦合对基态的贡献。新的发现是在单核钼酶、DMSO 还原酶的实验数据的背景下讨论的。