Suppr超能文献

一氧化碳与氮酶铁钼辅因子的结合:详细的量子力学/分子力学研究。

Carbon Monoxide Binding to the Iron-Molybdenum Cofactor of Nitrogenase: a Detailed Quantum Mechanics/Molecular Mechanics Investigation.

机构信息

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

Max Planck Institute for Chemical Energy Conversion, Stiftstr 34-36, 45470 Mülheim an der Ruhr, Germany.

出版信息

Inorg Chem. 2021 Dec 6;60(23):18031-18047. doi: 10.1021/acs.inorgchem.1c02649. Epub 2021 Nov 12.

Abstract

Carbon monoxide (CO) is a well-known inhibitor of nitrogenase activity. Under turnover conditions, CO binds to FeMoco, the active site of Mo nitrogenase. Time-resolved IR measurements suggest an initial terminal CO at 1904 cm that converts to a bridging CO at 1715 cm, and an X-ray structure shows that CO can displace one of the bridging belt sulfides of FeMoco. However, the CO-binding redox state(s) of FeMoco (E) and the role of the protein environment in stabilizing specific CO-bound intermediates remain elusive. In this work, we carry out an in-depth analysis of the CO-FeMoco interaction based on quantum chemical calculations addressing different aspects of the electronic structure. (1) The local electronic structure of the Fe-CO bond is studied through diamagnetically substituted FeMoco. (2) A cluster model of FeMoco within a polarizable continuum illustrates how CO binding may affect the spin-coupling between the metal centers. (3) A QM/MM model incorporates the explicit influence of the amino acid residues surrounding FeMoco in the MoFe protein. The QM/MM model predicts both a terminal and a bridging CO in the E redox state. The scaled calculated CO frequencies (1922 and 1716 cm, respectively) are in good agreement with the experimentally observed IR bands supporting CO binding to the E state. Alternatively, an E state QM/MM model, which has the same atomic structure as the CO-bound X-ray structure, features a semi-bridging CO with a scaled calculated frequency (1718 cm) similar to the bridging CO in the E model.

摘要

一氧化碳(CO)是众所周知的氮酶活性抑制剂。在周转条件下,CO 结合到 Mo 氮酶的活性位点 FeMoco。时间分辨红外测量表明初始末端 CO 在 1904 cm 处转化为桥连 CO 在 1715 cm 处,并且 X 射线结构表明 CO 可以取代 FeMoco 的桥接带硫之一。然而,FeMoco(E)的 CO 结合氧化还原状态和蛋白质环境在稳定特定 CO 结合中间体方面的作用仍然难以捉摸。在这项工作中,我们通过量子化学计算对 CO-FeMoco 相互作用进行了深入分析,涉及电子结构的不同方面。(1)通过抗磁性取代的 FeMoco 研究 Fe-CO 键的局部电子结构。(2)在极化连续体中的 FeMoco 团簇模型说明了 CO 结合如何影响金属中心之间的自旋耦合。(3)QM/MM 模型结合了 MoFe 蛋白中围绕 FeMoco 的氨基酸残基的明确影响。QM/MM 模型预测 E 氧化还原态下既有末端 CO 又有桥连 CO。计算出的 CO 频率(分别为 1922 和 1716 cm)与实验观察到的 IR 带很好地吻合,支持 CO 与 E 态结合。或者,具有与 CO 结合的 X 射线结构相同原子结构的 E 态 QM/MM 模型具有半桥连 CO,其计算出的比例频率(1718 cm)与 E 模型中的桥连 CO 相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d5f/8653219/38a7d42acba4/ic1c02649_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验