Rendon Julia, Biaso Frédéric, Ceccaldi Pierre, Toci René, Seduk Farida, Magalon Axel, Guigliarelli Bruno, Grimaldi Stéphane
Aix Marseille Univ, CNRS, BIP , Marseille, France.
Aix Marseille Univ, CNRS, LCB , Marseille, France.
Inorg Chem. 2017 Apr 17;56(8):4423-4435. doi: 10.1021/acs.inorgchem.6b03129. Epub 2017 Mar 31.
Respiratory nitrate reductases (Nars), members of the prokaryotic Mo/W-bis Pyranopterin Guanosine dinucleotide (Mo/W-bisPGD) enzyme superfamily, are key players in nitrate respiration, a major bioenergetic pathway widely used by microorganisms to cope with the absence of dioxygen. The two-electron reduction of nitrate to nitrite takes place at their active site, where the molybdenum ion cycles between Mo(VI) and Mo(IV) states via a Mo(V) intermediate. The active site shows two distinct pH-dependent Mo(V) electron paramagnetic resonance (EPR) signals whose structure and catalytic relevance have long been debated. In this study, we use EPR and HYSCORE techniques to probe their nuclear environment in Escherichia coli Nar (EcNar). By using samples prepared at different pH and through different enrichment strategies in Mo and N nuclei, we demonstrate that each of the two Mo(V) species is coupled to a single nitrogen nucleus with similar quadrupole characteristics. Structure-based density functional theory calculations allow us to propose a molecular model of the low-pH Mo(V) species consistent with EPR spectroscopic data. Our results show that the metal ion is coordinated by a monodentate aspartate ligand and permit the assignment of the coupled nitrogen nuclei to the Nδ of Asn52, a residue located ∼3.9 Å to the Mo atom in the crystal structures. This is confirmed by measurements on selectively N-Asn labeled EcNar. Further, we propose a Mo-O(H)···HN structure to account for the transfer of spin density onto the interacting nitrogen nucleus deduced from HYSCORE analysis. This work provides a foundation for monitoring the structure of the molybdenum active site in the presence of various substrates or inhibitors in Nars and other molybdenum enzymes.
呼吸型硝酸还原酶(Nar)是原核生物钼/钨-双吡喃蝶呤鸟苷二核苷酸(Mo/W-双PGD)酶超家族的成员,是硝酸盐呼吸的关键参与者。硝酸盐呼吸是一种主要的生物能量途径,微生物广泛利用它来应对缺氧环境。硝酸盐在其活性位点被双电子还原为亚硝酸盐,在该位点钼离子通过Mo(V)中间体在Mo(VI)和Mo(IV)状态之间循环。活性位点显示出两种不同的pH依赖性Mo(V)电子顺磁共振(EPR)信号,其结构和催化相关性长期以来一直存在争议。在本研究中,我们使用EPR和HYSCORE技术来探测大肠杆菌Nar(EcNar)中它们的核环境。通过使用在不同pH下制备的样品以及通过对Mo和N核的不同富集策略,我们证明了两种Mo(V)物种中的每一种都与具有相似四极特性的单个氮核耦合。基于结构的密度泛函理论计算使我们能够提出一个与EPR光谱数据一致的低pH值Mo(V)物种的分子模型。我们的结果表明,金属离子由一个单齿天冬氨酸配体配位,并允许将耦合的氮核归属于Asn52的Nδ,该残基在晶体结构中位于距Mo原子约3.9 Å处。这通过对选择性N-Asn标记的EcNar的测量得到证实。此外,我们提出了一种Mo-O(H)···HN结构来解释从HYSCORE分析推断出的自旋密度转移到相互作用的氮核上的情况。这项工作为在存在各种底物或抑制剂的情况下监测Nar和其他钼酶中钼活性位点的结构提供了基础。