Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
Nat Commun. 2023 May 6;14(1):2634. doi: 10.1038/s41467-023-38333-8.
Recent advances in single-cell RNA sequencing have shown heterogeneous cell types and gene expression states in the non-cancerous cells in tumors. The integration of multiple scRNA-seq datasets across tumors can indicate common cell types and states in the tumor microenvironment (TME). We develop a data driven framework, MetaTiME, to overcome the limitations in resolution and consistency that result from manual labelling using known gene markers. Using millions of TME single cells, MetaTiME learns meta-components that encode independent components of gene expression observed across cancer types. The meta-components are biologically interpretable as cell types, cell states, and signaling activities. By projecting onto the MetaTiME space, we provide a tool to annotate cell states and signature continuums for TME scRNA-seq data. Leveraging epigenetics data, MetaTiME reveals critical transcriptional regulators for the cell states. Overall, MetaTiME learns data-driven meta-components that depict cellular states and gene regulators for tumor immunity and cancer immunotherapy.
单细胞 RNA 测序的最新进展表明,肿瘤中的非癌细胞存在异质性的细胞类型和基因表达状态。整合来自多个肿瘤的 scRNA-seq 数据集可以指示肿瘤微环境 (TME) 中的常见细胞类型和状态。我们开发了一种数据驱动的框架 MetaTiME,以克服使用已知基因标记进行手动标记导致的分辨率和一致性限制。利用数百万个 TME 单细胞,MetaTiME 学习元组件,这些元组件编码跨癌症类型观察到的基因表达的独立成分。元组件可以从生物学上解释为细胞类型、细胞状态和信号活性。通过投射到 MetaTiME 空间,我们提供了一种工具来注释 TME scRNA-seq 数据的细胞状态和特征连续体。利用表观遗传学数据,MetaTiME 揭示了细胞状态的关键转录调节剂。总的来说,MetaTiME 学习数据驱动的元组件,描绘了肿瘤免疫和癌症免疫治疗的细胞状态和基因调节剂。