Suppr超能文献

体内 CRISPR 筛选鉴定出 E3 连接酶 Cop1 作为巨噬细胞浸润的调节剂和癌症免疫治疗靶点。

In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

出版信息

Cell. 2021 Oct 14;184(21):5357-5374.e22. doi: 10.1016/j.cell.2021.09.006. Epub 2021 Sep 27.

Abstract

Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.

摘要

尽管免疫检查点阻断 (ICB) 在癌症治疗中具有显著的临床疗效,但 ICB 对三阴性乳腺癌 (TNBC) 的益处仍然有限。通过在同种异体 TNBC 小鼠模型中进行的 pooled in vivo CRISPR knockout (KO) 筛选,我们发现癌细胞中 E3 泛素连接酶 Cop1 的缺失会减少与巨噬细胞相关的趋化因子的分泌,减少肿瘤巨噬细胞浸润,增强抗肿瘤免疫,并增强 ICB 反应。转录组学、表观基因组学和蛋白质组学分析表明,Cop1 通过蛋白酶体降解 C/ebpδ 蛋白发挥作用。Cop1 的底物 Trib2 作为连接 Cop1 和 C/ebpδ 的支架,导致 C/ebpδ 的多泛素化。此外,癌细胞中 E3 泛素连接酶 Cop1 的缺失稳定了 C/ebpδ,从而抑制了巨噬细胞趋化因子基因的表达。我们的综合方法表明,Cop1 可作为通过调节肿瘤微环境中趋化因子分泌和巨噬细胞浸润来提高 TNBC 癌症免疫治疗疗效的靶点。

相似文献

1
In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target.
Cell. 2021 Oct 14;184(21):5357-5374.e22. doi: 10.1016/j.cell.2021.09.006. Epub 2021 Sep 27.
3
In vivo CRISPR screens identify as an immunotherapy target in triple-negative breast cancer.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2406325121. doi: 10.1073/pnas.2406325121. Epub 2024 Sep 19.
4
In vivo multidimensional CRISPR screens identify as an immunotherapy target in triple-negative breast cancer.
Sci Adv. 2022 Jul;8(26):eabl8247. doi: 10.1126/sciadv.abl8247. Epub 2022 Jun 29.
5
Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens.
Front Immunol. 2022 May 16;13:884561. doi: 10.3389/fimmu.2022.884561. eCollection 2022.
6
E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17493-8. doi: 10.1073/pnas.0908027106. Epub 2009 Sep 24.
7
The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression.
Nat Commun. 2019 Mar 4;10(1):1034. doi: 10.1038/s41467-019-08618-y.

引用本文的文献

2
Targeted degradation of sICOSL reverses cytotoxic T cells dysfunction.
Exp Hematol Oncol. 2025 Jul 24;14(1):100. doi: 10.1186/s40164-025-00692-x.
4
Silencing NEDD4L Effectively Inhibits the Malignant Behaviors of Hepatocellular Carcinoma.
J Hepatocell Carcinoma. 2025 Jul 10;12:1369-1391. doi: 10.2147/JHC.S511466. eCollection 2025.
5
CRISPR screening approaches in breast cancer research.
Cancer Metastasis Rev. 2025 Jul 12;44(3):59. doi: 10.1007/s10555-025-10275-1.
8
Immune evasion and resistance in breast cancer.
Am J Cancer Res. 2025 Apr 15;15(4):1517-1539. doi: 10.62347/PNGT6996. eCollection 2025.

本文引用的文献

1
CoolBox: a flexible toolkit for visual analysis of genomics data.
BMC Bioinformatics. 2021 Oct 10;22(1):489. doi: 10.1186/s12859-021-04408-w.
2
Therapeutically Increasing MHC-I Expression Potentiates Immune Checkpoint Blockade.
Cancer Discov. 2021 Jun;11(6):1524-1541. doi: 10.1158/2159-8290.CD-20-0812. Epub 2021 Feb 15.
3
Falco: high-speed FastQC emulation for quality control of sequencing data.
F1000Res. 2019 Nov 7;8:1874. doi: 10.12688/f1000research.21142.2. eCollection 2019.
5
Functional genomic landscape of cancer-intrinsic evasion of killing by T cells.
Nature. 2020 Oct;586(7827):120-126. doi: 10.1038/s41586-020-2746-2. Epub 2020 Sep 23.
6
Ubiquitin Ligase COP1 Suppresses Neuroinflammation by Degrading c/EBPβ in Microglia.
Cell. 2020 Sep 3;182(5):1156-1169.e12. doi: 10.1016/j.cell.2020.07.011. Epub 2020 Aug 13.
7
Integrative analyses of single-cell transcriptome and regulome using MAESTRO.
Genome Biol. 2020 Aug 7;21(1):198. doi: 10.1186/s13059-020-02116-x.
8
TIMER2.0 for analysis of tumor-infiltrating immune cells.
Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514. doi: 10.1093/nar/gkaa407.
10
Quantitative Proteomics of the Cancer Cell Line Encyclopedia.
Cell. 2020 Jan 23;180(2):387-402.e16. doi: 10.1016/j.cell.2019.12.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验