Suppr超能文献

用于菲涅耳非相干相关全息术的复用编码掩模的增强设计。

Enhanced design of multiplexed coded masks for Fresnel incoherent correlation holography.

机构信息

Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia.

Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522502, India.

出版信息

Sci Rep. 2023 May 6;13(1):7390. doi: 10.1038/s41598-023-34492-2.

Abstract

Fresnel incoherent correlation holography (FINCH) is a well-established incoherent digital holography technique. In FINCH, light from an object point splits into two, differently modulated using two diffractive lenses with different focal distances and interfered to form a self-interference hologram. The hologram numerically back propagates to reconstruct the image of the object at different depths. FINCH, in the inline configuration, requires at least three camera shots with different phase shifts between the two interfering beams followed by superposition to obtain a complex hologram that can be used to reconstruct an object's image without the twin image and bias terms. In general, FINCH is implemented using an active device, such as a spatial light modulator, to display the diffractive lenses. The first version of FINCH used a phase mask generated by random multiplexing of two diffractive lenses, which resulted in high reconstruction noise. Therefore, a polarization multiplexing method was later developed to suppress the reconstruction noise at the expense of some power loss. In this study, a novel computational algorithm based on the Gerchberg-Saxton algorithm (GSA) called transport of amplitude into phase (TAP-GSA) was developed for FINCH to design multiplexed phase masks with high light throughput and low reconstruction noise. The simulation and optical experiments demonstrate a power efficiency improvement of ~ 150 and ~ 200% in the new method in comparison to random multiplexing and polarization multiplexing, respectively. The SNR of the proposed method is better than that of random multiplexing in all tested cases but lower than that of the polarization multiplexing method.

摘要

菲涅尔无相干相关全息术(FINCH)是一种成熟的非相干数字全息技术。在 FINCH 中,来自物体点的光分为两部分,使用两个具有不同焦距的衍射透镜以不同的方式调制,并进行干涉以形成自干涉全息图。全息图数值反向传播以重建物体在不同深度的图像。在INLINE 配置中,FINCH 至少需要三幅具有两个干涉光束之间不同相移的相机照片,然后进行叠加以获得可以用于重建物体图像而没有孪生像和偏置项的复全息图。通常,FINCH 使用诸如空间光调制器之类的有源器件来显示衍射透镜。FINCH 的第一个版本使用通过两个衍射透镜的随机复用生成的相位掩模,这导致高重建噪声。因此,后来开发了偏振复用方法来抑制重建噪声,但代价是一些功率损耗。在这项研究中,为 FINCH 开发了一种基于 Gerchberg-Saxton 算法(GSA)的新计算算法,称为振幅传输相位(TAP-GSA),用于设计具有高光通量和低重建噪声的复用相位掩模。模拟和光学实验表明,与随机复用和偏振复用相比,新方法的功率效率分别提高了约 150%和 200%。在所有测试情况下,所提出的方法的 SNR 都优于随机复用方法,但低于偏振复用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10164182/3f1b35e9820e/41598_2023_34492_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验