Suppr超能文献

基于深度学习相移技术的单次菲涅耳非相干相关全息术

Single-shot Fresnel incoherent correlation holography via deep learning based phase-shifting technology.

作者信息

Huang Tao, Zhang Qinnan, Li Jiaosheng, Lu Xiaoxu, Di Jianglei, Zhong Liyun, Qin Yuwen

出版信息

Opt Express. 2023 Apr 10;31(8):12349-12356. doi: 10.1364/OE.486289.

Abstract

Fresnel incoherent correlation holography (FINCH) realizes non-scanning three-dimension (3D) images using spatial incoherent illumination, but it requires phase-shifting technology to remove the disturbance of the DC term and twin term that appears in the reconstruction field, thus increasing the complexity of the experiment and limits the real-time performance of FINCH. Here, we propose a single-shot Fresnel incoherent correlation holography via deep learning based phase-shifting (FINCH/DLPS) method to realize rapid and high-precision image reconstruction using only a collected interferogram. A phase-shifting network is designed to implement the phase-shifting operation of FINCH. The trained network can conveniently predict two interferograms with the phase shift of 2/3 π and 4/3 π from one input interferogram. Using the conventional three-step phase-shifting algorithm, we can conveniently remove the DC term and twin term of the FINCH reconstruction and obtain high-precision reconstruction through the back propagation algorithm. The Mixed National Institute of Standards and Technology (MNIST) dataset is used to verify the feasibility of the proposed method through experiments. In the test with the MNIST dataset, the reconstruction results demonstrate that in addition to high-precision reconstruction, the proposed FINCH/DLPS method also can effectively retain the 3D information by calibrating the back propagation distance in the case of reducing the complexity of the experiment, further indicating the feasibility and superiority of the proposed FINCH/DLPS method.

摘要

菲涅耳非相干相关全息术(FINCH)利用空间非相干照明实现非扫描三维(3D)成像,但它需要相移技术来消除重建场中出现的直流项和孪生项的干扰,从而增加了实验的复杂性并限制了FINCH的实时性能。在此,我们提出了一种基于深度学习相移的单次菲涅耳非相干相关全息术(FINCH/DLPS)方法,仅使用采集到的干涉图即可实现快速高精度的图像重建。设计了一个相移网络来实现FINCH的相移操作。经过训练的网络可以方便地从一个输入干涉图预测出相移为2/3π和4/3π的两个干涉图。使用传统的三步相移算法,我们可以方便地消除FINCH重建中的直流项和孪生项,并通过反向传播算法获得高精度重建。使用混合国家标准与技术研究院(MNIST)数据集通过实验验证了所提方法的可行性。在MNIST数据集测试中,重建结果表明,所提的FINCH/DLPS方法除了能实现高精度重建外,在降低实验复杂性的情况下,通过校准反向传播距离还能有效保留3D信息,进一步表明了所提FINCH/DLPS方法的可行性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验