Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
Biochem Biophys Res Commun. 2023 Jul 12;665:107-117. doi: 10.1016/j.bbrc.2023.04.093. Epub 2023 Apr 30.
Although mucopolysaccharidoses (MPS) are monogenic diseases, caused by mutations in genes coding for enzymes involved in degradation of glycosaminoglycans (GAGs), recent studies suggested that changes in expressions of various genes might cause secondary and tertiary cellular dysfunctions modulating the course of these diseases. In this report, we demonstrate that vesicle trafficking regulation is affected in fibroblasts derived from patients suffering from 11 different types of MPS due to changes in levels of crucial proteins (estimated by automated Western-blotting) involved in this process, including caveolin, clathrin, huntingtin (Htt), APPL1, EEA1, GOPC, Rab5, and Rab7. Microscopic studies confirmed these results, while investigations of tissue samples derived from the MPS I mouse model indicated differences between various organs in this matter. Moreover, transcriptomic analyses provided a global picture for changes in expressions of genes related to vesicle trafficking in MPS cells. We conclude that vesicle trafficking is dysregulated in MPS cells and changes in this process might contribute to the molecular mechanisms of this disease. Most probably, primary GAG storage might cause a cellular stress response leading to dysregulation of expression of many genes which, in turn, results in changes in cellular processes like vesicle trafficking. This can significantly modulate the course of the disease due to enhancing accumulation of GAGs and altering crucial cellular processes. This hypothesis has been supported by normalization of levels of clathrin in MPS cells treated with either an active form of the deficient GAG-degrading enzyme or a compound (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) indirectly reducing the efficiency of GAG synthesis.
虽然黏多糖贮积症(MPS)是单基因疾病,由编码参与糖胺聚糖(GAG)降解的酶的基因突变引起,但最近的研究表明,各种基因表达的变化可能导致次级和三级细胞功能障碍,从而调节这些疾病的进程。在本报告中,我们证明由于参与该过程的关键蛋白(通过自动 Western-blotting 估计)水平的变化,源自患有 11 种不同类型 MPS 的患者的成纤维细胞中的囊泡运输调节受到影响,包括窖蛋白、网格蛋白、亨廷顿蛋白(Htt)、APPL1、EEA1、GOPC、Rab5 和 Rab7。显微镜研究证实了这些结果,而对源自 MPS I 小鼠模型的组织样本的研究表明,在这个问题上,不同器官之间存在差异。此外,转录组分析为 MPS 细胞中与囊泡运输相关的基因表达变化提供了全面的图景。我们得出结论,囊泡运输在 MPS 细胞中失调,并且该过程的变化可能有助于该疾病的分子机制。很可能,初级 GAG 储存会引起细胞应激反应,导致许多与囊泡运输相关的基因表达失调,这反过来又会导致细胞过程(如囊泡运输)的变化。由于增强 GAG 的积累和改变关键细胞过程,这可能显著调节疾病的进程。这一假设得到了用活性形式的缺乏 GAG 降解酶或化合物(5,7-二羟基-3-(4-羟基苯基)-4H-1-苯并吡喃-4-酮)处理 MPS 细胞后,网格蛋白水平正常化的支持,该化合物间接降低了 GAG 合成的效率。