Suppr超能文献

一种可靠且高效的自适应贝叶斯方法,用于评估静态下肢位置感。

A reliable and efficient adaptive Bayesian method to assess static lower limb position sense.

机构信息

Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States; Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States.

Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States; Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States.

出版信息

J Neurosci Methods. 2023 May 15;392:109875. doi: 10.1016/j.jneumeth.2023.109875. Epub 2023 May 6.

Abstract

BACKGROUND

Lower limb proprioception is critical for maintaining stability during gait and may impact how individuals modify their movements in response to changes in the environment and body state, a process termed "sensorimotor adaptation". However, the connection between lower limb proprioception and sensorimotor adaptation during human gait has not been established. We suspect this gap is due in part to the lack of reliable, efficient methods to assess global lower limb proprioception in an ecologically valid context.

NEW METHOD

We assessed static lower limb proprioception using an alternative forced choice task, administered twice to determine test-retest reliability. Participants stood on a dual-belt treadmill which passively moved one limb to stimulus locations selected by a Bayesian adaptive algorithm. At the stimulus locations, participants judged relative foot positions and the algorithm estimated the point of subjective equality (PSE) and the uncertainty of lower limb proprioception.

RESULTS

Using the Bland-Altman method, combined with Bayesian statistics, we found that both the PSE and uncertainty estimates had good reliability.

COMPARISON WITH EXISTING METHOD(S): Current methods assessing static lower limb proprioception do so within a single joint, in non-weight bearing positions, and rely heavily on memory. One exception assessed static lower limb proprioception in standing but did not measure reliability and contained confounds impacting participants' judgments, which we experimentally controlled here.

CONCLUSIONS

This efficient and reliable method assessing lower limb proprioception will aid future mechanistic understanding of locomotor adaptation and serve as a useful tool for basic and clinical researchers studying balance and falls.

摘要

背景

下肢本体感觉对于在行走时保持稳定性至关重要,它可能会影响个体如何根据环境和身体状态的变化来调整运动,这个过程被称为“感觉运动适应”。然而,下肢本体感觉与人类行走时的感觉运动适应之间的联系尚未确定。我们怀疑这种差距部分归因于缺乏可靠、有效的方法来在生态上有效的背景下评估下肢本体感觉的整体感知。

新方法

我们使用替代强制选择任务来评估静态下肢本体感觉,该任务分两次进行以确定测试-重测可靠性。参与者站在双带跑步机上,跑步机被动地将一条腿移动到由贝叶斯自适应算法选择的刺激位置。在刺激位置,参与者判断相对足部位置,算法估计主观等距点(PSE)和下肢本体感觉的不确定性。

结果

使用 Bland-Altman 方法结合贝叶斯统计学,我们发现 PSE 和不确定性估计都具有良好的可靠性。

与现有方法的比较

目前评估静态下肢本体感觉的方法是在单一关节内、非负重位置进行的,并且严重依赖于记忆。一个例外是在站立时评估静态下肢本体感觉,但没有测量可靠性,并且包含影响参与者判断的混淆因素,我们在这里通过实验进行了控制。

结论

这种评估下肢本体感觉的高效可靠方法将有助于未来对运动适应的机制理解,并为研究平衡和跌倒的基础和临床研究人员提供有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/305b/10285506/789d3d39eacd/nihms-1900967-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验