Suppr超能文献

一种用于评估静态下肢位置觉的可靠且高效的自适应贝叶斯方法。

A reliable and efficient adaptive Bayesian method to assess static lower limb position sense.

作者信息

Wood Jonathan M, Morton Susanne M, Kim Hyosub E

机构信息

Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States.

Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States.

出版信息

bioRxiv. 2023 Apr 19:2023.01.23.525102. doi: 10.1101/2023.01.23.525102.

Abstract

BACKGROUND

Lower limb proprioception is critical for maintaining stability during gait and may impact how individuals modify their movements in response to changes in the environment and body state, a process termed "sensorimotor adaptation". However, the connection between lower limb proprioception and sensorimotor adaptation during human gait has not been established. We suspect this gap is due in part to the lack of reliable, efficient methods to assess global lower limb proprioception in an ecologically valid context.

NEW METHOD

We assessed static lower limb proprioception using an alternative forced choice task, administered twice to determine test-retest reliability. Participants stood on a dual-belt treadmill which passively moved one limb to stimulus locations selected by a Bayesian adaptive algorithm. At the stimulus locations, participants judged relative foot positions and the algorithm estimated the point of subjective equality (PSE) and the uncertainty of lower limb proprioception.

RESULTS

Using the Bland-Altman method, combined with Bayesian statistics, we found that both the PSE and uncertainty estimates had good reliability.

COMPARISON WITH EXISTING METHODS

Current methods assessing static lower limb proprioception do so within a single joint, in non-weight bearing positions, and rely heavily on memory. One exception assessed static lower limb proprioception in standing but did not measure reliability and contained confounds impacting participants' judgments, which we experimentally controlled here.

CONCLUSIONS

This efficient and reliable method assessing lower limb proprioception will aid future mechanistic understanding of locomotor adaptation and serve as a useful tool for basic and clinical researchers studying balance and falls.

摘要

背景

下肢本体感觉对于步态期间维持稳定性至关重要,并且可能影响个体如何根据环境和身体状态的变化来调整其动作,这一过程称为“感觉运动适应”。然而,人类步态期间下肢本体感觉与感觉运动适应之间的联系尚未确立。我们怀疑这一差距部分归因于缺乏在生态有效环境中评估整体下肢本体感觉的可靠、高效方法。

新方法

我们使用一种替代性强制选择任务评估静态下肢本体感觉,该任务进行两次以确定重测信度。参与者站在双带跑步机上,跑步机被动地将一条腿移动到由贝叶斯自适应算法选择的刺激位置。在刺激位置,参与者判断相对足部位置,算法估计主观相等点(PSE)和下肢本体感觉的不确定性。

结果

使用布兰德-奥特曼方法并结合贝叶斯统计,我们发现PSE和不确定性估计均具有良好的信度。

与现有方法的比较

当前评估静态下肢本体感觉的方法是在单个关节内、非负重位置进行,并且严重依赖记忆。一个例外是评估站立时的静态下肢本体感觉,但未测量信度且包含影响参与者判断的混杂因素,我们在此进行了实验控制。

结论

这种评估下肢本体感觉的高效且可靠的方法将有助于未来对运动适应的机制理解,并作为基础和临床研究人员研究平衡和跌倒的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d917/10123796/1120ab128543/nihpp-2023.01.23.525102v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验