Suppr超能文献

基于数据的 TDP-43 蛋白病神经病理学分期和亚型分类。

Data-driven neuropathological staging and subtyping of TDP-43 proteinopathies.

机构信息

Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.

Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1V 6LJ, UK.

出版信息

Brain. 2023 Jul 3;146(7):2975-2988. doi: 10.1093/brain/awad145.

Abstract

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer's disease (n = 304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating individuals with and without Alzheimer's disease and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.

摘要

TDP-43(TAR DNA 结合蛋白-43)的积累是几种神经退行性疾病的主要病理学基础。为了更好地描述 TDP-43 蛋白病,需要对 TDP-43 积累的进展和异质性进行绘制,但目前的 TDP-43 分期系统是启发式的,并假设每个综合征都是同质的。在这里,我们使用数据驱动的疾病进展建模,为 TDP-43(FTLD-TDP,n = 126)、肌萎缩侧索硬化症(ALS,n = 141)和伴有或不伴有阿尔茨海默病的边缘为主的与年龄相关的 TDP-43 脑病神经病理改变(LATE-NC,n = 304)的分类和区分,得出了一个精细的经验性分期系统。ALS 和 FTLD-TDP 的数据驱动分期补充并扩展了之前描述的 ALS 和行为变异额颞叶痴呆的人类定义分期方案。在 LATE-NC 个体中,沿着数据驱动阶段的进展与年龄呈正相关,但与 FTLD-TDP 个体的年龄呈负相关。仅使用区域 TDP-43 严重程度,我们的数据分析驱动模型可以区分被诊断为 ALS、FTLD-TDP 或 LATE-NC 的个体,交叉验证准确率为 85.9%,错误分类与混合病理诊断、年龄和遗传突变有关。将年龄和 SuStaIn 阶段添加到该模型中,准确率提高到 92.3%。我们的模型区分了 LATE-NC 与 FTLD-TDP,尽管在晚期 LATE-NC 和早期 FTLD-TDP 之间观察到一些重叠。我们进一步在每个诊断组内测试了是否存在具有不同区域 TDP-43 进展模式的亚型,在 FTLD-TDP 中鉴定出两种不同的皮质优势和脑干优势亚型,在 ALS 中进一步鉴定出两种皮质下优势和皮质边缘优势亚型。FTLD-TDP 亚型表现出不同比例的 TDP-43 类型,而 ALS 亚型之间存在年龄趋势差异。有趣的是,在每个蛋白病的脑干/皮质下优势亚型中,都观察到年龄与 SuStaIn 阶段之间的负相关关系。尽管聚集了患有和不患有阿尔茨海默病的个体,并为该组增加了更大的样本量,但在 LATE-NC 组中没有观察到亚型。总体而言,我们为 ALS、FTLD-TDP 和 LATE-NC 提供了一个经验性的 TDP-43 病理分期系统,该系统产生了准确的分类。我们进一步证明,ALS 和 FTLD-TDP 的进展模式存在很大的异质性,这需要在更大的跨队列研究中进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b986/10317181/a27c1e347fea/awad145f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验