Raza Muhammad Tayyab, Park Sung Ha
Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
ACS Omega. 2023 Apr 18;8(17):15041-15051. doi: 10.1021/acsomega.2c08017. eCollection 2023 May 2.
The fast and extensive generation of patterns using specific algorithms is a major challenge in the field of DNA algorithmic self-assembly. Turing machines (TMs) are simple computable machines that execute certain algorithms using carefully designed logic gates. We investigate Turing algorithms for the generation of patterns on algorithmic lattices using specific logic gates. Logic gates can be implemented into Turing building blocks. We discuss comprehensive methods for designing Turing building blocks to demonstrate an -state and -color Turing machine (- TM). The -state and -color (- = 1-1, 2-1, and 1-2) TMs generate Turing patterns that can be fabricated via DNA algorithmic self-assembly. The - TMs require two-input and three-output logic gates. We designed the head, tape, and transition rule tiles to demonstrate TMs for the 1-1, 2-1, and 1-2 Turing algorithms. By analyzing the characteristics of the Turing patterns, we classified them into two classes (DL and DR for states grown diagonally to the left and right, respectively) for the 1-1 TM, three for the 2-1 TM, and nine for the 1-2 TM. Among these, six representative Turing patterns generated using rules R11-0 and R11-1 for 1-1 TM, R21-01 and R21-09 for 2-1 TM, and R12-02 and R12-08 for 1-2 TM were constructed with DNA building blocks. Turing patterns on the DNA lattices were visualized by atomic force microscopy. The Turing patterns on the DNA lattices were similar to those simulated patterns. Implementing the Turing algorithms into DNA building blocks, as demonstrated via DNA algorithmic self-assembly, can be extended to a higher order of state and color to generate more complicated patterns, compute arithmetic operations, and solve mathematical functions.
使用特定算法快速且广泛地生成图案是DNA算法自组装领域的一项重大挑战。图灵机(TMs)是简单的可计算机器,它们使用精心设计的逻辑门执行特定算法。我们研究了使用特定逻辑门在算法晶格上生成图案的图灵算法。逻辑门可以被实现到图灵构建模块中。我们讨论了设计图灵构建模块以展示n状态和m颜色图灵机(n-TM)的综合方法。n状态和m颜色(n = 1-1、2-1和1-2)的图灵机生成的图灵图案可以通过DNA算法自组装来制造。n-TM需要两输入和三输出逻辑门。我们设计了头部、磁带和转移规则模块来展示用于1-1、2-1和1-2图灵算法的图灵机。通过分析图灵图案的特征,对于1-1图灵机,我们将它们分为两类(分别为向左和向右对角生长状态的DL和DR),对于2-1图灵机分为三类,对于1-2图灵机分为九类。其中,使用1-1图灵机的规则R11-0和R11-1、2-1图灵机的R21-01和R21-09以及1-2图灵机的R12-02和R12-08生成的六个代表性图灵图案用DNA构建模块构建而成。DNA晶格上的图灵图案通过原子力显微镜进行可视化。DNA晶格上的图灵图案与模拟图案相似。如通过DNA算法自组装所展示的那样,将图灵算法实现到DNA构建模块中,可以扩展到更高阶的状态和颜色,以生成更复杂的图案、计算算术运算并解决数学函数问题。