Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea.
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Korea.
Nanoscale. 2021 Dec 2;13(46):19376-19384. doi: 10.1039/d1nr05055a.
Target-oriented cellular automata with computation are the primary challenge in the field of DNA algorithmic self-assembly in connection with specific rules. We investigate the feasibility of using the principle of cellular automata for mathematical subjects by using specific logic gates that can be implemented into DNA building blocks. Here, we connect the following five representative elementary functions: (i) enumeration of multiples of 2, 3, and 4 (demonstrated R094, R062, and R190 in 3-input/1-output logic rules); (ii) the remainder of 0 and 1 (R132); (iii) powers of 2 (R129); (iv) ceiling function for /2 and /4 (R152 and R144); and (v) analogous pattern of annihilation (R184) to DNA algorithmic patterns formed by specific rules. After designing the abstract building blocks and simulating the generation of algorithmic lattices, we conducted an experiment as follows: designing of DNA tiles with specific sticky ends, construction of DNA lattices a two-step annealing method, and verification of expected algorithmic patterns on a given DNA lattice using an atomic force microscope (AFM). We observed representative patterns, such as horizontal and diagonal stripes and embedded triangles, on the given algorithmic lattices. The average error rates of individual rules are in the range of 8.8% (R184) to 11.9% (R062), and the average error rate for all the rules was 10.6%. Interpretation of elementary functions demonstrated through DNA algorithmic patterns could be extended to more complicated functions, which may lead to new insights for achieving the final answers of functions with experimentally obtained patterns.
面向目标的具有计算能力的细胞自动机是与特定规则相关的 DNA 算法自组装领域的主要挑战。我们通过使用可以实现为 DNA 构建块的特定逻辑门来研究细胞自动机原理在数学学科中的可行性。在这里,我们连接了以下五个具有代表性的基本函数:(i)2、3 和 4 的倍数枚举(在 3 输入/1 输出逻辑规则中展示了 R094、R062 和 R190);(ii)余数 0 和 1(R132);(iii)2 的幂(R129);(iv)/2 和 /4 的天花板函数(R152 和 R144);以及(v)类似于湮灭的模式(R184)到由特定规则形成的 DNA 算法模式。在设计抽象构建块并模拟算法格的生成之后,我们进行了如下实验:设计具有特定粘性末端的 DNA 瓦片,构建 DNA 格-使用两步退火方法,以及使用原子力显微镜(AFM)在给定的 DNA 格上验证预期的算法模式。我们观察到给定算法格上具有代表性的模式,例如水平和对角线条纹以及嵌入式三角形。各个规则的平均错误率在 8.8%(R184)到 11.9%(R062)之间,所有规则的平均错误率为 10.6%。通过 DNA 算法模式展示的基本函数的解释可以扩展到更复杂的函数,这可能为通过实验获得的模式实现函数的最终答案提供新的见解。