Suppr超能文献

通过自动机器学习方法识别严重心理困扰的预测因素。

Identifying the predictors of severe psychological distress by auto-machine learning methods.

作者信息

Zhang Xiaomei, Ren Haoying, Gao Lei, Shia Ben-Chang, Chen Ming-Chih, Ye Linglong, Wang Ruojia, Qin Lei

机构信息

School of Statistics, University of International Business and Economics, Beijing, China.

School of Law, University of International Business and Economics, Beijing, China.

出版信息

Inform Med Unlocked. 2023;39:101258. doi: 10.1016/j.imu.2023.101258. Epub 2023 Apr 28.

Abstract

Social stress in daily life and the COVID-19 pandemic have greatly impacted the mental health of the population. Early detection of a predisposition to severe psychological distress is essential for timely interventions. This paper analyzed 4036 samples participating in the 2019-2020 National Health Information Trends Survey (HINTS) and identified 57 candidate predictors of severe psychological distress based on univariate chi-square and -test analyses. Five machine learning methods, namely logistic regression (LR), automatic generalized linear models (Auto-GLM), automatic random forests (Auto-Random Forests), automatic deep neural networks (Auto-Deep learning) and automatic gradient boosting machines (Auto-GBM), were employed to model synthetic minority oversampling technique-based (SMOTE) resampled data and identify predictors of severe psychological distress. Predictors were evaluated by odds ratios in logistic models and variable importance in the other models. Forty-seven variables were identified as significant predictors of severe psychological distress, including 13 sociodemographic variables and 34 variables related to individual lifestyle and behavioral habits. Among them, new potentially relevant variables related to an individual's level of concern and trust in cancer information, exposure to health care providers, and cancer screening and awareness are included. The performance of each model was evaluated using five-fold cross-validation. The optimal model performance-wise was Auto-GBM with an accuracy of 89.75%, a precision of 89.68%, a recall of 89.31%, an F1-score of 89.48% and an AUC of 95.57%. Significant predictors of severe psychological distress were identified in this study and the value of machine learning methods in predicting severe psychological distress is demonstrated, thereby enhancing pre-prediction and clinical decision-making of severe psychological distress problems.

摘要

日常生活中的社会压力以及新冠疫情对民众的心理健康产生了巨大影响。早期发现严重心理困扰的易感性对于及时干预至关重要。本文分析了参与2019 - 2020年国家健康信息趋势调查(HINTS)的4036个样本,并基于单变量卡方检验和t检验分析确定了57个严重心理困扰的候选预测因素。采用了五种机器学习方法,即逻辑回归(LR)、自动广义线性模型(Auto - GLM)、自动随机森林(Auto - Random Forests)、自动深度神经网络(Auto - Deep learning)和自动梯度提升机(Auto - GBM),对基于合成少数过采样技术(SMOTE)重采样的数据进行建模,并识别严重心理困扰的预测因素。通过逻辑模型中的优势比以及其他模型中的变量重要性来评估预测因素。确定了47个变量为严重心理困扰的显著预测因素,包括13个社会人口统计学变量和34个与个人生活方式及行为习惯相关的变量。其中包括与个人对癌症信息的关注和信任程度、与医疗保健提供者的接触以及癌症筛查和认知相关的新的潜在相关变量。使用五折交叉验证对每个模型的性能进行评估。在性能最优方面,Auto - GBM的准确率为89.75%,精确率为89.68%,召回率为89.31%,F1分数为89.48%,曲线下面积(AUC)为95.57%。本研究确定了严重心理困扰的显著预测因素,并证明了机器学习方法在预测严重心理困扰方面的价值,从而增强了对严重心理困扰问题的预测和临床决策能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5327/10141788/f075d83ab85e/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验