Suppr超能文献

基于二维和三维超声的放射组学用于预测甲状腺乳头状癌的甲状腺外侵犯特征

RADIOMICS BASED ON TWO-DIMENSIONAL AND THREE-DIMENSIONAL ULTRASOUND FOR EXTRATHYROIDAL EXTENSION FEATURE PREDICTION IN PAPILLARY THYROID CARCINOMA.

作者信息

Lu W J, Qiu Y R, Wu Y W, Li J, Chen R, Chen S N, Lin Y Y, OuYang L Y, Chen J Y, Chen F, Qiu S D

机构信息

The Second Affiliated Hospital of Guangzhou Medical University - Ultrasound.

The Second Clinical School of Guangzhou Medical University - Department of Clinical Medicine, Guangzhou, Guangdong, China.

出版信息

Acta Endocrinol (Buchar). 2022 Oct-Dec;18(4):407-416. doi: 10.4183/aeb.2022.407.

Abstract

AIM

To evaluate the diagnostic performance of radiomics features of two-dimensional (2D) and three-dimensional (3D) ultrasound (US) in predicting extrathyroidal extension (ETE) status in papillary thyroid carcinoma (PTC).

PATIENTS AND METHODS

2D and 3D thyroid ultrasound images of 72 PTC patients confirmed by pathology were retrospectively analyzed. The patients were assigned to ETE and non-ETE. The regions of interest (ROIs) were obtained manually. From these images, a larger number of radiomic features were automatically extracted. Lastly, the diagnostic abilities of the radiomics models and a radiologist were evaluated using receiver operating characteristic (ROC) analysis. We extracted 1693 texture features firstly.

RESULTS

The area under the ROC curve (AUC) of the radiologist was 0.65. For 2D US, the mean AUC of the three classifiers separately were: 0.744 for logistic regression (LR), 0.694 for multilayer perceptron (MLP), 0.733 for support vector machines (SVM). For 3D US they were 0.876 for LR, 0.825 for MLP, 0.867 for SVM. The diagnostic efficiency of the radiomics was better than radiologist. The LR model had favorable discriminate performance with higher area under the curve.

CONCLUSION

Radiomics based on US image had the potential to preoperatively predict ETE. Radiomics based on 3D US images presented more advantages over radiomics based on 2D US images and radiologist.

摘要

目的

评估二维(2D)和三维(3D)超声(US)的影像组学特征在预测甲状腺乳头状癌(PTC)甲状腺外侵犯(ETE)状态方面的诊断性能。

患者与方法

回顾性分析72例经病理证实的PTC患者的2D和3D甲状腺超声图像。将患者分为ETE组和非ETE组。手动获取感兴趣区域(ROI)。从这些图像中自动提取大量影像组学特征。最后,使用受试者操作特征(ROC)分析评估影像组学模型和放射科医生的诊断能力。我们首先提取了1693个纹理特征。

结果

放射科医生的ROC曲线下面积(AUC)为0.65。对于2D US,三个分类器的平均AUC分别为:逻辑回归(LR)为0.744,多层感知器(MLP)为0.694,支持向量机(SVM)为0.733。对于3D US,它们分别为:LR为0.876,MLP为0.825,SVM为0.867。影像组学的诊断效率优于放射科医生。LR模型具有良好的鉴别性能,曲线下面积更高。

结论

基于超声图像的影像组学有术前预测ETE的潜力。基于3D US图像的影像组学比基于2D US图像的影像组学和放射科医生具有更多优势。

相似文献

5
Extrathyroidal Extension Prediction of Papillary Thyroid Cancer With Computed Tomography Based Radiomics Nomogram: A Multicenter Study.
Front Endocrinol (Lausanne). 2022 Jun 1;13:874396. doi: 10.3389/fendo.2022.874396. eCollection 2022.
10
A radiomics nomogram for the ultrasound-based evaluation of central cervical lymph node metastasis in papillary thyroid carcinoma.
Front Endocrinol (Lausanne). 2022 Nov 30;13:1064434. doi: 10.3389/fendo.2022.1064434. eCollection 2022.

本文引用的文献

1
Assessing Diagnostic Value of Combining Ultrasound and MRI in Extrathyroidal Extension of Papillary Thyroid Carcinoma.
Cancer Manag Res. 2022 Mar 29;14:1285-1292. doi: 10.2147/CMAR.S350032. eCollection 2022.
2
Technological Advances Have Improved Surgical Outcome in Thyroid Surgery: Myth or Reality?
Acta Endocrinol (Buchar). 2021 Apr-Jun;17(1):1-6. doi: 10.4183/aeb.2021.1.
3
An update in musculoskeletal tumors: from quantitative imaging to radiomics.
Radiol Med. 2021 Aug;126(8):1095-1105. doi: 10.1007/s11547-021-01368-2. Epub 2021 May 19.
4
A Radiomic Nomogram for the Ultrasound-Based Evaluation of Extrathyroidal Extension in Papillary Thyroid Carcinoma.
Front Oncol. 2021 Mar 4;11:625646. doi: 10.3389/fonc.2021.625646. eCollection 2021.
5
Radiomics Features Predict Promoter Mutations in World Health Organization Grade II Gliomas a Machine-Learning Approach.
Front Oncol. 2021 Feb 11;10:606741. doi: 10.3389/fonc.2020.606741. eCollection 2020.
10
Prediction of Cervical Lymph Node Metastasis Using MRI Radiomics Approach in Papillary Thyroid Carcinoma: A Feasibility Study.
Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820969451. doi: 10.1177/1533033820969451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验