Suppr超能文献

影像组学特征预测世界卫生组织二级胶质瘤中的启动子突变:一种机器学习方法

Radiomics Features Predict Promoter Mutations in World Health Organization Grade II Gliomas a Machine-Learning Approach.

作者信息

Fang Shengyu, Fan Ziwen, Sun Zhiyan, Li Yiming, Liu Xing, Liang Yuchao, Liu Yukun, Zhou Chunyao, Zhu Qiang, Zhang Hong, Li Tianshi, Li Shaowu, Jiang Tao, Wang Yinyan, Wang Lei

机构信息

Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

Front Oncol. 2021 Feb 11;10:606741. doi: 10.3389/fonc.2020.606741. eCollection 2020.

Abstract

The detection of mutations in telomerase reverse transcriptase promoter (p) is important since preoperative diagnosis of p status helps with evaluating prognosis and determining the surgical strategy. Here, we aimed to establish a radiomics-based machine-learning algorithm and evaluated its performance with regard to the prediction of mutations in p in patients with World Health Organization (WHO) grade II gliomas. In total, 164 patients with WHO grade II gliomas were enrolled in this retrospective study. We extracted a total of 1,293 radiomics features from multi-parametric magnetic resonance imaging scans. Elastic net (used for feature selection) and support vector machine with linear kernel were applied in nested 10-fold cross-validation loops. The predictive model was evaluated by receiver operating characteristic and precision-recall analyses. We performed an unpaired t-test to compare the posterior predictive probabilities among patients with differing p statuses. We selected 12 valuable radiomics features using nested 10-fold cross-validation loops. The area under the curve (AUC) was 0.8446 (95% confidence interval [CI], 0.7735-0.9065) with an optimal summed value of sensitivity of 0.9355 (95% CI, 0.8802-0.9788) and specificity of 0.6197 (95% CI, 0.5071-0.7371). The overall accuracy was 0.7988 (95% CI, 0.7378-0.8598). The F1-score was 0.8406 (95% CI, 0.7684-0.902) with an optimal precision of 0.7632 (95% CI, 0.6818-0.8364) and recall of 0.9355 (95% CI, 0.8802-0.9788). Posterior probabilities of p mutations were significantly different between patients with wild-type and mutant promoters. Our findings suggest that a radiomics analysis with a machine-learning algorithm can be useful for predicting p status in patients with WHO grade II glioma and may aid in glioma management.

摘要

端粒酶逆转录酶启动子(p)突变的检测很重要,因为术前对p状态的诊断有助于评估预后和确定手术策略。在此,我们旨在建立一种基于放射组学的机器学习算法,并评估其在预测世界卫生组织(WHO)II级胶质瘤患者p突变方面的性能。本回顾性研究共纳入164例WHO II级胶质瘤患者。我们从多参数磁共振成像扫描中总共提取了1293个放射组学特征。弹性网络(用于特征选择)和带线性核的支持向量机应用于嵌套的10折交叉验证循环。通过受试者工作特征曲线和精确召回分析对预测模型进行评估。我们进行了非配对t检验,以比较不同p状态患者的后验预测概率。我们使用嵌套的10折交叉验证循环选择了12个有价值的放射组学特征。曲线下面积(AUC)为0.8446(95%置信区间[CI],0.7735 - 0.9065),最佳总灵敏度值为0.9355(95%CI,0.8802 - 0.9788),特异性为0.6197(95%CI,0.5071 - 0.7371)。总体准确率为0.7988(95%CI,0.7378 - 0.8598)。F1分数为0.8406(95%CI,0.7684 - 0.902),最佳精度为0.7632(95%CI,0.6818 - 0.8364),召回率为0.9355(95%CI,0.8802 - 0.9788)。野生型和突变型启动子患者之间p突变的后验概率有显著差异。我们的研究结果表明,采用机器学习算法的放射组学分析可用于预测WHO II级胶质瘤患者的p状态,并可能有助于胶质瘤的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ece0/7905226/a4a2b7eab229/fonc-10-606741-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验