Suppr超能文献

通过与自然语言处理模型相结合的摄入性访谈来评估辅助认知功能。

Assessment of adjunct cognitive functioning through intake interviews integrated with natural language processing models.

作者信息

Igarashi Toshiharu, Umeda-Kameyama Yumi, Kojima Taro, Akishita Masahiro, Nihei Misato

机构信息

Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwa, Japan.

Department of Geriatric Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

出版信息

Front Med (Lausanne). 2023 Apr 21;10:1145314. doi: 10.3389/fmed.2023.1145314. eCollection 2023.

Abstract

In this article, we developed an interview framework and natural language processing model for estimating cognitive function, based on an intake interview with psychologists in a hospital setting. The questionnaire consisted of 30 questions in five categories. To evaluate the developed interview items and the accuracy of the natural language processing model, we recruited participants with the approval of the University of Tokyo Hospital and obtained the cooperation of 29 participants (7 men and 22 women) aged 72-91 years. Based on the MMSE results, a multilevel classification model was created to classify the three groups, and a binary classification model to sort the two groups. For each of these models, we tested whether the accuracy would improve when text augmentation was performed. The accuracy in the multi-level classification results for the test data was 0.405 without augmentation and 0.991 with augmentation. The accuracy of the test data in the results of the binary classification without augmentation was 0.488 for the moderate dementia and mild dementia groups, 0.767 for the moderate dementia and MCI groups, and 0.700 for the mild dementia and MCI groups. In contrast, the accuracy of the test data in the augmented binary classification results was 0.972 for moderate dementia and mild dementia groups, 0.996 for moderate dementia and MCI groups, and 0.985 for mild dementia and MCI groups.

摘要

在本文中,我们基于在医院环境中对心理学家进行的入院访谈,开发了一种用于评估认知功能的访谈框架和自然语言处理模型。该问卷由五个类别的30个问题组成。为了评估所开发的访谈项目和自然语言处理模型的准确性,我们在获得东京大学医院批准的情况下招募了参与者,并得到了29名年龄在72至91岁之间的参与者(7名男性和22名女性)的合作。基于简易精神状态检查表(MMSE)的结果,创建了一个多级分类模型来对三组进行分类,以及一个二元分类模型来对两组进行分类。对于这些模型中的每一个,我们都测试了进行文本增强时准确性是否会提高。测试数据在未进行增强的多级分类结果中的准确率为0.405,进行增强后的准确率为0.991。在未进行增强的二元分类结果中,中度痴呆和轻度痴呆组的测试数据准确率为0.488,中度痴呆和轻度认知障碍(MCI)组为0.767,轻度痴呆和MCI组为0.700。相比之下,在增强后的二元分类结果中,中度痴呆和轻度痴呆组的测试数据准确率为0.972,中度痴呆和MCI组为0.996,轻度痴呆和MCI组为0.985。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab8b/10162011/4c16fd13b0cc/fmed-10-1145314-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验