Suppr超能文献

摄入访谈后评估住院工作认知功能的问卷,以及使用声学特征开发和评估分类模型。

Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features.

机构信息

Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa 277-8563, Japan.

Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 3-1, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Sensors (Basel). 2023 Jun 5;23(11):5346. doi: 10.3390/s23115346.

Abstract

The number of people with dementia is increasing each year, and early detection allows for early intervention and treatment. Since conventional screening methods are time-consuming and expensive, a simple and inexpensive screening is expected. We created a standardized intake questionnaire with thirty questions in five categories and used machine learning to categorize older adults with moderate and mild dementia and mild cognitive impairment, based on speech patterns. To evaluate the feasibility of the developed interview items and the accuracy of the classification model based on acoustic features, 29 participants (7 males and 22 females) aged 72 to 91 years were recruited with the approval of the University of Tokyo Hospital. The MMSE results showed that 12 participants had moderate dementia with MMSE scores of 20 or less, 8 participants had mild dementia with MMSE scores between 21 and 23, and 9 participants had MCI with MMSE scores between 24 and 27. As a result, Mel-spectrogram generally outperformed MFCC in terms of accuracy, precision, recall, and F1-score in all classification tasks. The multi-classification using Mel-spectrogram achieved the highest accuracy of 0.932, while the binary classification of moderate dementia and MCI group using MFCC achieved the lowest accuracy of 0.502. The FDR was generally low for all classification tasks, indicating a low rate of false positives. However, the FNR was relatively high in some cases, indicating a higher rate of false negatives.

摘要

患痴呆症的人数每年都在增加,早期发现可以进行早期干预和治疗。由于传统的筛查方法既耗时又昂贵,因此人们期望有一种简单且廉价的筛查方法。我们创建了一个包含 30 个问题的标准化访谈问卷,分为五个类别,并使用机器学习根据言语模式对中度和轻度痴呆症以及轻度认知障碍的老年人进行分类。为了评估开发的访谈项目的可行性和基于声学特征的分类模型的准确性,我们在东京大学医院的批准下招募了 29 名年龄在 72 至 91 岁的参与者(7 名男性和 22 名女性)。MMSE 结果显示,12 名参与者有中度痴呆症,MMSE 评分在 20 或以下,8 名参与者有轻度痴呆症,MMSE 评分在 21 至 23 之间,9 名参与者有 MCI,MMSE 评分在 24 至 27 之间。结果表明,在所有分类任务中,梅尔频谱图在准确性、精度、召回率和 F1 分数方面普遍优于 MFCC。使用梅尔频谱图的多分类达到了最高的准确性 0.932,而使用 MFCC 的中度痴呆症和 MCI 组的二分类达到了最低的准确性 0.502。所有分类任务的 FDR 通常较低,表明假阳性率较低。然而,在某些情况下 FNR 相对较高,表明假阴性率较高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622f/10256110/7c7edde4bb47/sensors-23-05346-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验