Suppr超能文献

可变声速的全场光声层析成像分析

Analysis for Full-Field Photoacoustic Tomography with Variable Sound Speed.

作者信息

Nguyen Linh, Haltmeier Markus, Kowar Richard, Do Ngoc

机构信息

Department of Mathematics, University of Idaho, 875 Perimeter Dr, Moscow, ID 83844, USA.

Department of Mathematics, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria.

出版信息

SIAM J Imaging Sci. 2022;15(3):1213-1228. doi: 10.1137/21m1463409.

Abstract

Photoacoustic tomography (PAT) is a non-invasive imaging modality that requires recovering the initial data of the wave equation from certain measurements of the solution outside the object. In the standard PAT measurement setup, the used data consist of time-dependent signals measured on an observation surface. In contrast, the measured data from the recently invented full-field detection technique provide the solution of the wave equation on a spatial domain at a single instant in time. While reconstruction using classical PAT data has been extensively studied, not much is known for the full field PAT problem. In this paper, we build mathematical foundations of the latter problem for variable sound speed and settle its uniqueness and stability. Moreover, we introduce an exact inversion method using time-reversal and study its convergence. Our results demonstrate the suitability of both the full field approach and the proposed time-reversal technique for high resolution photoacoustic imaging.

摘要

光声层析成像(PAT)是一种非侵入性成像模态,它需要从物体外部解的某些测量值中恢复波动方程的初始数据。在标准的PAT测量设置中,所使用的数据由在观测表面上测量的随时间变化的信号组成。相比之下,最近发明的全场检测技术所测量的数据在单个时刻提供了波动方程在空间域上的解。虽然使用经典PAT数据进行重建已经得到了广泛研究,但对于全场PAT问题却知之甚少。在本文中,我们为可变声速的后一个问题建立了数学基础,并确定了其唯一性和稳定性。此外,我们引入了一种使用时间反转的精确反演方法并研究其收敛性。我们的结果证明了全场方法和所提出的时间反转技术都适用于高分辨率光声成像。

相似文献

1
Analysis for Full-Field Photoacoustic Tomography with Variable Sound Speed.
SIAM J Imaging Sci. 2022;15(3):1213-1228. doi: 10.1137/21m1463409.
2
Cross-sectional imaging of speed-of-sound distribution using photoacoustic reversal beacons.
Photoacoustics. 2024 Nov 14;41:100666. doi: 10.1016/j.pacs.2024.100666. eCollection 2025 Feb.
3
Time reversal for photoacoustic tomography based on the wave equation of Nachman, Smith, and Waag.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):023203. doi: 10.1103/PhysRevE.89.023203. Epub 2014 Feb 13.
4
A Deep Learning Approach for the Photoacoustic Tomography Recovery From Undersampled Measurements.
Front Neurosci. 2021 Feb 24;15:598693. doi: 10.3389/fnins.2021.598693. eCollection 2021.
5
Cross-sectional photoacoustic tomography image reconstruction with a multi-curve integration model.
Comput Methods Programs Biomed. 2020 Dec;197:105731. doi: 10.1016/j.cmpb.2020.105731. Epub 2020 Sep 3.
6
Model-based optical and acoustical compensation for photoacoustic tomography of heterogeneous mediums.
Photoacoustics. 2021 May 19;23:100275. doi: 10.1016/j.pacs.2021.100275. eCollection 2021 Sep.
8
Numerical investigation of nonlinear sound propagation of photoacoustic tomography imaging.
Opt Express. 2017 Sep 18;25(19):23486-23492. doi: 10.1364/OE.25.023486.
9
Accelerated high-resolution photoacoustic tomography via compressed sensing.
Phys Med Biol. 2016 Dec 21;61(24):8908-8940. doi: 10.1088/1361-6560/61/24/8908. Epub 2016 Dec 2.
10
Wavelength-dependent error minimization for quantitative spectroscopic photoacoustic tomography with a ring-array system.
Z Med Phys. 2023 Aug;33(3):444-451. doi: 10.1016/j.zemedi.2023.04.005. Epub 2023 May 22.

引用本文的文献

1
Ultrasound-enhanced Unet model for quantitative photoacoustic tomography of ovarian lesions.
Photoacoustics. 2022 Oct 25;28:100420. doi: 10.1016/j.pacs.2022.100420. eCollection 2022 Dec.
2
The feasibility study of XACT imaging for characterizing osteoporosis.
Med Phys. 2022 Dec;49(12):7694-7702. doi: 10.1002/mp.15906. Epub 2022 Aug 24.
3
4
Domain Transform Network for Photoacoustic Tomography from Limited-view and Sparsely Sampled Data.
Photoacoustics. 2020 May 21;19:100190. doi: 10.1016/j.pacs.2020.100190. eCollection 2020 Sep.
5
Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning.
Sci Rep. 2020 May 22;10(1):8510. doi: 10.1038/s41598-020-65235-2.
6
[Review on photoacoustic tomographic image reconstruction for acoustically heterogeneous tissues].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Jun 25;36(3):486-492. doi: 10.7507/1001-5515.201809014.
7
Deep learning for photoacoustic tomography from sparse data.
Inverse Probl Sci Eng. 2018 Sep 11;27(7):987-1005. doi: 10.1080/17415977.2018.1518444. eCollection 2019.
8
Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1382-1393. doi: 10.1109/TMI.2018.2820382.

本文引用的文献

2
High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection.
Biomed Opt Express. 2014 Jul 16;5(8):2635-47. doi: 10.1364/BOE.5.002635. eCollection 2014 Aug 1.
3
Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media.
IEEE Trans Med Imaging. 2013 Jun;32(6):1097-110. doi: 10.1109/TMI.2013.2254496. Epub 2013 Mar 22.
4
Biomedical photoacoustic imaging.
Interface Focus. 2011 Aug 6;1(4):602-31. doi: 10.1098/rsfs.2011.0028. Epub 2011 Jun 22.
5
Full field detection in photoacoustic tomography.
Opt Express. 2010 Mar 15;18(6):6288-99. doi: 10.1364/OE.18.006288.
7
Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046706. doi: 10.1103/PhysRevE.75.046706. Epub 2007 Apr 17.
8
Reconstructions in limited-view thermoacoustic tomography.
Med Phys. 2004 Apr;31(4):724-33. doi: 10.1118/1.1644531.
9
A k-space method for large-scale models of wave propagation in tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Mar;48(2):341-54. doi: 10.1109/58.911717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验