Suppr超能文献

一种用于从欠采样测量中恢复光声断层成像的深度学习方法。

A Deep Learning Approach for the Photoacoustic Tomography Recovery From Undersampled Measurements.

作者信息

Shahid Husnain, Khalid Adnan, Liu Xin, Irfan Muhammad, Ta Dean

机构信息

Department of Electronic Engineering, Fudan University, Shanghai, China.

Department of Software Engineering, Northeastern University, Shenyang, China.

出版信息

Front Neurosci. 2021 Feb 24;15:598693. doi: 10.3389/fnins.2021.598693. eCollection 2021.

Abstract

Photoacoustic tomography (PAT) is a propitious imaging modality, which is helpful for biomedical study. However, fast PAT imaging and denoising is an exigent task in medical research. To address the problem, recently, methods based on compressed sensing (CS) have been proposed, which accede the low computational cost and high resolution for implementing PAT. Nevertheless, the imaging results of the sparsity-based methods strictly rely on sparsity and incoherence conditions. Furthermore, it is onerous to ensure that the experimentally acquired photoacoustic data meets CS's prerequisite conditions. In this work, a deep learning-based PAT (Deep-PAT)method is instigated to overcome these limitations. By using a neural network, Deep-PAT is not only able to reconstruct PAT from a fewer number of measurements without considering the prerequisite conditions of CS, but also can eliminate undersampled artifacts effectively. The experimental results demonstrate that Deep-PAT is proficient at recovering high-quality photoacoustic images using just 5% of the original measurement data. Besides this, compared with the sparsity-based method, it can be seen through statistical analysis that the quality is significantly improved by 30% (approximately), having average SSIM = 0.974 and PSNR = 29.88 dB with standard deviation ±0.007 and ±0.089, respectively, by the proposed Deep-PAT method. Also, a comparsion of multiple neural networks provides insights into choosing the best one for further study and practical implementation.

摘要

光声断层扫描(PAT)是一种很有前景的成像方式,对生物医学研究很有帮助。然而,快速的PAT成像和去噪是医学研究中的一项紧迫任务。为了解决这个问题,最近已经提出了基于压缩感知(CS)的方法,这些方法在实现PAT时具有低计算成本和高分辨率的优点。然而,基于稀疏性的方法的成像结果严格依赖于稀疏性和非相干条件。此外,要确保实验获取的光声数据满足CS的前提条件是很困难的。在这项工作中,我们提出了一种基于深度学习的PAT(Deep-PAT)方法来克服这些局限性。通过使用神经网络,Deep-PAT不仅能够在不考虑CS前提条件的情况下从较少的测量数据中重建PAT,而且还能有效地消除欠采样伪影。实验结果表明,Deep-PAT仅使用5%的原始测量数据就能熟练地恢复高质量的光声图像。除此之外,通过统计分析可以看出,与基于稀疏性的方法相比,所提出的Deep-PAT方法的质量显著提高了约30%,平均结构相似性指数(SSIM)= 0.974,峰值信噪比(PSNR)= 29.88 dB,标准差分别为±0.007和±0.089。此外,对多个神经网络的比较为进一步研究和实际应用中选择最佳网络提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b87f/7943731/8e40bc13a1ec/fnins-15-598693-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验