Suppr超能文献

长新冠:长新冠复杂性的综述和拟议可视化。

Long COVID: a review and proposed visualization of the complexity of long COVID.

机构信息

Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa.

Department of Pulmonology and Critical Care, Division of Internal Medicine, School Clinical Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

出版信息

Front Immunol. 2023 Apr 20;14:1117464. doi: 10.3389/fimmu.2023.1117464. eCollection 2023.

Abstract

Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2) infection, or Long COVID, is a prevailing second pandemic with nearly 100 million affected individuals globally and counting. We propose a visual description of the complexity of Long COVID and its pathogenesis that can be used by researchers, clinicians, and public health officials to guide the global effort toward an improved understanding of Long COVID and the eventual mechanism-based provision of care to afflicted patients. The proposed visualization or framework for Long COVID should be an evidence-based, dynamic, modular, and systems-level approach to the condition. Furthermore, with further research such a framework could establish the strength of the relationships between pre-existing conditions (or risk factors), biological mechanisms, and resulting clinical phenotypes and outcomes of Long COVID. Notwithstanding the significant contribution that disparities in access to care and social determinants of health have on outcomes and disease course of long COVID, our model focuses primarily on biological mechanisms. Accordingly, the proposed visualization sets out to guide scientific, clinical, and public health efforts to better understand and abrogate the health burden imposed by long COVID.

摘要

严重急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)感染后的后遗症,即长新冠,是目前流行的第二波大流行,全球受影响的人数近亿。我们提出了一种长新冠及其发病机制的复杂性的可视化描述,可以供研究人员、临床医生和公共卫生官员使用,以指导全球努力,增进对长新冠的理解,并最终为受影响的患者提供基于机制的护理。建议的长新冠可视化或框架应该是对该疾病的一种基于证据、动态、模块化和系统级的方法。此外,随着进一步的研究,这样的框架可以确定预先存在的疾病(或风险因素)、生物学机制以及长新冠的临床表型和结果之间的关系强度。尽管医疗保健机会的差异和健康的社会决定因素对长新冠的结果和疾病进程有重大影响,但我们的模型主要侧重于生物学机制。因此,拟议的可视化旨在指导科学、临床和公共卫生工作,以更好地理解和减轻长新冠带来的健康负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e834/10157068/74b617b8865e/fimmu-14-1117464-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验