Suppr超能文献

超越传统模型:为何更广泛地理解双翅目与微生物群的相互作用对媒介传播疾病的控制至关重要。

Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control.

作者信息

Arellano Aldo A, Sommer Andrew J, Coon Kerri L

机构信息

Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Evol Ecol. 2023 Feb;37(1):165-188. doi: 10.1007/s10682-022-10197-2. Epub 2022 Jul 28.

Abstract

Vector-borne diseases constitute a major global public health threat. The most significant arthropod disease vectors are predominantly comprised of members of the insect order Diptera (true flies), which have long been the focus of research into host-pathogen dynamics. Recent studies have revealed the underappreciated diversity and function of dipteran-associated gut microbial communities, with important implications for dipteran physiology, ecology, and pathogen transmission. However, the effective parameterization of these aspects into epidemiological models will require a comprehensive study of microbe-dipteran interactions across vectors and related species. Here, we synthesize recent research into microbial communities associated with major families of dipteran vectors and highlight the importance of development and expansion of experimentally tractable models across Diptera towards understanding the functional roles of the gut microbiota in modulating disease transmission. We then posit why further study of these and other dipteran insects is not only essential to a comprehensive understanding of how to integrate vector-microbiota interactions into existing epidemiological frameworks, but our understanding of the ecology and evolution of animal-microbe symbiosis more broadly.

摘要

媒介传播疾病构成了全球重大的公共卫生威胁。最重要的节肢动物疾病媒介主要由双翅目昆虫(实蝇)组成,长期以来,它们一直是宿主 - 病原体动态研究的重点。最近的研究揭示了与双翅目相关的肠道微生物群落未被充分认识的多样性和功能,这对双翅目的生理学、生态学和病原体传播具有重要意义。然而,要将这些方面有效地纳入流行病学模型,需要对不同媒介及相关物种之间的微生物 - 双翅目相互作用进行全面研究。在此,我们综合了近期关于与双翅目媒介主要类群相关的微生物群落的研究,并强调了在双翅目范围内开发和扩展易于实验操作的模型对于理解肠道微生物群在调节疾病传播中的功能作用的重要性。然后,我们提出为什么进一步研究这些及其他双翅目昆虫不仅对于全面理解如何将媒介 - 微生物群相互作用纳入现有流行病学框架至关重要,而且对于更广泛地理解动物 - 微生物共生的生态学和进化也至关重要。

相似文献

2
Mechanisms underlying gut microbiota-host interactions in insects.
J Exp Biol. 2021 Jan 28;224(Pt 2):jeb207696. doi: 10.1242/jeb.207696.
3
The mosquito holobiont: fresh insight into mosquito-microbiota interactions.
Microbiome. 2018 Mar 20;6(1):49. doi: 10.1186/s40168-018-0435-2.
4
Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens.
Curr Opin Insect Sci. 2022 Apr;50:100875. doi: 10.1016/j.cois.2022.100875. Epub 2022 Jan 19.
5
Evolutionary consequences of vector-borne transmission: how using vectors shapes host, vector and pathogen evolution.
Parasitology. 2022 Nov;149(13):1667-1678. doi: 10.1017/S0031182022001378. Epub 2022 Oct 6.
7
Roles of Symbiotic Microorganisms in Arboviral Infection of Arthropod Vectors.
Trends Parasitol. 2020 Jul;36(7):607-615. doi: 10.1016/j.pt.2020.04.009. Epub 2020 May 5.
8
[Mosquito microbiota and its influence on disease vectorial transmission].
Biol Aujourdhui. 2018;212(3-4):119-136. doi: 10.1051/jbio/2019003. Epub 2019 Apr 11.
9
The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission.
Front Cell Infect Microbiol. 2017 Jun 8;7:236. doi: 10.3389/fcimb.2017.00236. eCollection 2017.

引用本文的文献

1
Genomic evidence for flies as carriers of zoonotic pathogens on dairy farms.
NPJ Biofilms Microbiomes. 2025 Jun 19;11(1):111. doi: 10.1038/s41522-025-00685-y.
3
Stable flies are bona fide carriers of mastitis-associated bacteria.
mSphere. 2024 Jul 30;9(7):e0033624. doi: 10.1128/msphere.00336-24. Epub 2024 Jun 26.

本文引用的文献

1
Wolbachia wAlbB inhibits bluetongue and epizootic hemorrhagic fever viruses in Culicoides midge cells.
Med Vet Entomol. 2022 Sep;36(3):320-328. doi: 10.1111/mve.12569. Epub 2022 Mar 10.
2
Comparative Microbiota Composition Across Developmental Stages of Natural and Laboratory-Reared Populations From India.
Front Microbiol. 2021 Nov 26;12:746830. doi: 10.3389/fmicb.2021.746830. eCollection 2021.
3
Host-Environment Interplay Shapes Fungal Diversity in Mosquitoes.
mSphere. 2021 Oct 27;6(5):e0064621. doi: 10.1128/mSphere.00646-21. Epub 2021 Sep 29.
5
Chironomidae larvae: A neglected enricher of antibiotic resistance genes in the food chain of freshwater environments.
Environ Pollut. 2021 Sep 15;285:117486. doi: 10.1016/j.envpol.2021.117486. Epub 2021 Jun 2.
6
The holobiont transcriptome of teneral tsetse fly species of varying vector competence.
BMC Genomics. 2021 May 31;22(1):400. doi: 10.1186/s12864-021-07729-5.
7
Living in the endosymbiotic world of Wolbachia: A centennial review.
Cell Host Microbe. 2021 Jun 9;29(6):879-893. doi: 10.1016/j.chom.2021.03.006. Epub 2021 May 3.
8
Culturable bacteria in adults of a Southeast Asian black fly, Simulium tani (Diptera:Simuliidae).
Acta Trop. 2021 Jul;219:105923. doi: 10.1016/j.actatropica.2021.105923. Epub 2021 Apr 18.
9
Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2101080118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验