Zhao Wen, Cui Congcong, Xu Yongheng, Liu Qiyuan, Zhang Yang, Zhang Zihan, Lu Shenci, Rong Ziqiang, Li Xinzhe, Fang Yiyun, Huang Wei
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Adv Mater. 2023 Jul;35(29):e2301593. doi: 10.1002/adma.202301593. Epub 2023 May 31.
Exposing active sites and optimizing their binding strength to reaction intermediates are two essential strategies to significantly improve the catalytic performance of 2D materials. However, pursuing an efficient way to achieve these goals simultaneously remains a considerable challenge. Here, using 2D PtTe van der Waals material with a well-defined crystal structure and atomically thin thickness as a model catalyst, it is observed that a moderate calcination strategy can promote the structural transformation of 2D crystal PtTe nanosheets (c-PtTe NSs) into oxygen-doped 2D amorphous PtTe NSs (a-PtTe NSs). The experimental and theoretical investigations cooperatively reveal that oxygen dopants can break the inherent Pt-Te covalent bond in c-PtTe NSs, thereby triggering the reconfiguration of interlayer Pt atoms and exposing them thoroughly. Meanwhile, the structural transformation can effectively tailor the electronic properties (e.g., the density of state near the Fermi level, d-band center, and conductivity) of Pt active sites via the hybridization of Pt 5d orbitals and O 2p orbitals. As a result, a-PtTe NSs with large amounts of exposed Pt active sites and optimized binding strength to hydrogen intermediates exhibit excellent activity and stability in hydrogen evolution reaction.
暴露活性位点并优化它们与反应中间体的结合强度是显著提高二维材料催化性能的两个基本策略。然而,寻求一种同时实现这些目标的有效方法仍然是一个巨大的挑战。在此,以具有明确晶体结构和原子级薄厚度的二维范德华材料PtTe作为模型催化剂,发现一种适度的煅烧策略可以促进二维晶体PtTe纳米片(c-PtTe NSs)向氧掺杂的二维非晶态PtTe纳米片(a-PtTe NSs)的结构转变。实验和理论研究共同表明,氧掺杂剂可以打破c-PtTe NSs中固有的Pt-Te共价键,从而引发层间Pt原子的重新排列并使其充分暴露。同时,结构转变可以通过Pt 5d轨道与O 2p轨道的杂化有效地调整Pt活性位点的电子性质(例如费米能级附近的态密度、d带中心和电导率)。结果,具有大量暴露的Pt活性位点且与氢中间体的结合强度得到优化的a-PtTe NSs在析氢反应中表现出优异的活性和稳定性。