Suppr超能文献

利用组织微阵列上RhoB表达的卷积特征的马尔可夫模型预测直肠癌的五年生存率

Prediction of Five-Year Survival Rate for Rectal Cancer Using Markov Models of Convolutional Features of RhoB Expression on Tissue Microarray.

作者信息

Pham Tuan D

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3195-3204. doi: 10.1109/TCBB.2023.3274211. Epub 2023 Oct 9.

Abstract

The ability to predict survival in cancer is clinically important because the finding can help patients and physicians make optimal treatment decisions. Artificial intelligence in the context of deep learning has been increasingly realized by the informatics-oriented medical community as a powerful machine-learning technology for cancer research, diagnosis, prediction, and treatment. This paper presents the combination of deep learning, data coding, and probabilistic modeling for predicting five-year survival in a cohort of patients with rectal cancer using images of RhoB expression on biopsies. Using about one-third of the patients' data for testing, the proposed approach achieved 90% prediction accuracy, which is much higher than the direct use of the best pretrained convolutional neural network (70%) and the best coupling of a pretrained model and support vector machines (70%).

摘要

预测癌症患者的生存情况在临床上具有重要意义,因为这一结果有助于患者和医生做出最佳治疗决策。深度学习背景下的人工智能已被以信息学为导向的医学界日益视为一种用于癌症研究、诊断、预测和治疗的强大机器学习技术。本文介绍了深度学习、数据编码和概率建模相结合的方法,用于利用活检组织中RhoB表达的图像预测一组直肠癌患者的五年生存率。使用约三分之一的患者数据进行测试,所提出的方法实现了90%的预测准确率,远高于直接使用最佳预训练卷积神经网络的准确率(70%)以及预训练模型与支持向量机的最佳组合的准确率(70%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验