College of Chemistry, Jilin University, Changchun 130022, China; Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China.
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
J Colloid Interface Sci. 2023 Sep;645:380-390. doi: 10.1016/j.jcis.2023.04.148. Epub 2023 May 3.
Polymeric materials that have been extensively applied in medical devices, wearable electronics, and food packaging are readily contaminated by bothersome pathogenic bacteria. Bioinspired mechano-bactericidal surfaces can deliver lethal rupture for contacted bacterial cells through mechanical stress. However, the mechano-bactericidal activity based only on polymeric nanostructures is not satisfactory, especially for the Gram-positive strain which is generally more resistant to mechanical lysis. Here, we show that the mechanical bactericidal performance of polymeric nanopillars can be significantly enhanced by the combination of photothermal therapy. We fabricated the nanopillars through the combination of low-cost anodized aluminum oxide (AAO) template-assisted method with an environment-friendly Layer-by-Layer (LbL) assembly technique of tannic acid (TA) and iron ion (Fe). The fabricated hybrid nanopillar exhibited remarkable bactericidal performances (more than 99%) toward both Gram-negative Pseudomonas aeruginosa (P. aeruginosa) and stubborn Gram-positive Staphylococcus aureus (S. aureus) bacteria. Notably, this hybrid nanostructured surface displayed excellent biocompatibility for murine L929 fibroblast cells, indicating a selective biocidal activity between bacterial cells and mammalian cells. Thus, the concept and antibacterial system described here present a low-cost, scalable, and highly repeatable strategy for the construction of physical bactericidal nanopillars on polymeric films with high performance and biosafety, but without any risks of causing antibacterial resistance.
已经广泛应用于医疗器械、可穿戴电子产品和食品包装的聚合材料很容易被讨厌的病原菌污染。受生物启发的机械杀菌表面可以通过机械应力对接触的细菌细胞造成致命的破裂。然而,仅基于聚合物纳米结构的机械杀菌活性并不令人满意,特别是对于革兰氏阳性菌株,其通常对机械裂解更具抗性。在这里,我们表明,通过光热疗法的结合,可以显著提高聚合物纳米柱的机械杀菌性能。我们通过将廉价的氧化铝阳极氧化 (AAO) 模板辅助方法与单宁酸 (TA) 和铁离子 (Fe) 的环保层层 (LbL) 组装技术相结合来制造纳米柱。所制造的混合纳米柱对革兰氏阴性铜绿假单胞菌 (P. aeruginosa) 和顽强的革兰氏阳性金黄色葡萄球菌 (S. aureus) 细菌均表现出显著的杀菌性能(超过 99%)。值得注意的是,这种混合纳米结构表面对鼠成纤维细胞 L929 具有优异的生物相容性,表明细菌细胞和哺乳动物细胞之间存在选择性杀菌活性。因此,这里描述的概念和抗菌系统为在具有高性能和生物安全性的聚合物薄膜上构建具有高性价比和生物安全性的物理杀菌纳米柱提供了一种低成本、可扩展且高度可重复的策略,而不会带来任何产生抗菌耐药性的风险。