Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain.
Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
Nat Commun. 2023 May 8;14(1):2652. doi: 10.1038/s41467-023-38380-1.
Despite a century of research, our understanding of cement dissolution and precipitation processes at early ages is very limited. This is due to the lack of methods that can image these processes with enough spatial resolution, contrast and field of view. Here, we adapt near-field ptychographic nanotomography to in situ visualise the hydration of commercial Portland cement in a record-thick capillary. At 19 h, porous C-S-H gel shell, thickness of 500 nm, covers every alite grain enclosing a water gap. The spatial dissolution rate of small alite grains in the acceleration period, ∼100 nm/h, is approximately four times faster than that of large alite grains in the deceleration stage, ∼25 nm/h. Etch-pit development has also been mapped out. This work is complemented by laboratory and synchrotron microtomographies, allowing to measure the particle size distributions with time. 4D nanoimaging will allow mechanistically study dissolution-precipitation processes including the roles of accelerators and superplasticizers.
尽管经过了一个世纪的研究,我们对于水泥早期的溶解和沉淀过程的理解仍然非常有限。这是由于缺乏能够以足够的空间分辨率、对比度和视场来成像这些过程的方法。在这里,我们采用近场相衬纳米层析技术对商业波特兰水泥在记录厚度的毛细管中的水化作用进行原位可视化。在 19 小时时,厚度为 500nm 的多孔 C-S-H 凝胶壳覆盖了每个阿利特晶粒,包围着一个水隙。在加速期,小阿利特晶粒的空间溶解速率约为 100nm/h,大约是减速阶段大阿利特晶粒的 4 倍,约为 25nm/h。还绘制了侵蚀坑的发展情况。这项工作得到了实验室和同步辐射微层析的补充,使我们能够随时间测量颗粒尺寸分布。4D 纳米成像将允许我们对溶解-沉淀过程进行机制研究,包括促进剂和超塑化剂的作用。