Opt Express. 2023 Apr 10;31(8):12384-12396. doi: 10.1364/OE.486873.
Bound states in the continuum (BICs) provide, what we believe to be, a novel and efficient way for light trapping. However, using BICs to confine the light into a three-dimensional compact volume remains a challenging task, since the energy leakage at the lateral boundaries dominates the cavity loss when its footprint shrinks to considerably small, and hence, sophisticated boundary designs turn out to be inevitable. Conventional design methods fail in solving the lateral boundary problem because a large number of degree-of-freedoms (DOFs) are involved. Here, we propose a fully automatic optimization method to promote the performance of lateral confinement for a miniaturized BIC cavity. Briefly, we combine a random parameter adjustment process with a convolutional neural network (CNN), to automatically predict the optimal boundary design in the parameter space that contains a number of DOFs. As a result, the quality factor that is accounted for lateral leakage increases from 4.32 × 10 in the baseline design to 6.32 × 10 in the optimized design. This work confirms the effectiveness of using CNNs for photonic optimization and will motivate the development of compact optical cavities for on-chip lasers, OLEDs, and sensor arrays.
束缚在连续体中的态(BICs)为光捕获提供了一种新颖且高效的方式。然而,将 BIC 用于将光限制在三维紧凑体积中仍然是一项具有挑战性的任务,因为当足迹缩小到相当小的尺寸时,横向边界的能量泄漏会主导腔损耗,因此,复杂的边界设计是不可避免的。传统的设计方法在解决横向边界问题时失败了,因为涉及到大量的自由度(DOFs)。在这里,我们提出了一种全自动优化方法,以提高小型化 BIC 腔的横向限制性能。简而言之,我们将随机参数调整过程与卷积神经网络(CNN)相结合,以自动在包含多个自由度的参数空间中预测最佳边界设计。结果,横向泄漏的品质因数从基准设计中的 4.32×10 增加到优化设计中的 6.32×10。这项工作证实了使用 CNN 进行光子优化的有效性,并将激发用于片上激光器、OLED 和传感器阵列的紧凑型光学腔的发展。