Suppr超能文献

具有高Q值声场增强的连续体中拓扑优化的束缚态

Topology-Optimized Bound States in the Continuum with High-Q Acoustic Field Enhancement.

作者信息

Li Weibai, Ghabraie Kazem, Huang Xiaodong

机构信息

School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.

School of Engineering, Deakin University, Waurn Ponds, VIC, 3216, Australia.

出版信息

Adv Sci (Weinh). 2025 Jun;12(21):e2414344. doi: 10.1002/advs.202414344. Epub 2025 Mar 27.

Abstract

Achieving high-quality (high-Q) acoustic resonances remains a critical goal in acoustic device design, given their exceptional sound manipulation capabilities. However, enhancing Q-factors is often hindered by energy dissipation and material losses, except for leveraging bound states in the continuum (BICs). This paper introduces a methodology utilizing topology optimization to achieve high-Q resonances based on the concept of BICs, which effectively confine acoustic waves by minimizing energy leakage. This method explores entirely new topology classes through the optimization of a single unit cell embedded within periodic arrays. By engineering quasi-BIC modes and experimentally validating sharp pressure field enhancements, a robust technique that enables precise tuning of resonance frequencies and improves resilience against external perturbations, which is challenging for the conventional parameter-tuning approach is presented. These findings show promise for advancing wave-confining applications, such as energy harvesting and acoustic filtering, while pushing the performance boundaries of acoustic devices.

摘要

鉴于其卓越的声音操控能力,实现高质量(高Q)声学共振仍然是声学器件设计中的一个关键目标。然而,除了利用连续统中的束缚态(BICs)之外,提高品质因数往往受到能量耗散和材料损耗的阻碍。本文介绍了一种利用拓扑优化基于BICs概念实现高Q共振的方法,该方法通过最小化能量泄漏有效地限制声波。该方法通过优化嵌入在周期性阵列中的单个单元胞来探索全新的拓扑类别。通过设计准BIC模式并通过实验验证尖锐的压力场增强,提出了一种强大的技术,该技术能够精确调谐共振频率并提高对外部扰动的弹性,而这对于传统的参数调谐方法来说具有挑战性。这些发现为推进波限制应用(如能量收集和声滤波)带来了希望,同时推动了声学器件的性能边界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef63/12140341/265e2a726b18/ADVS-12-2414344-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验