Suppr超能文献

两点分辨像倒易干涉仪中的像差和失调容限。

Tolerance to aberration and misalignment in a two-point-resolving image inversion interferometer.

出版信息

Opt Express. 2023 May 8;31(10):16393-16405. doi: 10.1364/OE.487808.

Abstract

Image inversion interferometry can measure the separation of two incoherent point sources at or near the quantum limit. This technique has the potential to improve upon current state-of-the-art imaging technologies, with applications ranging from microbiology to astronomy. However, unavoidable aberrations and imperfections in real systems may prevent inversion interferometry from providing an advantage for real-world applications. Here, we numerically study the effects of realistic imaging system imperfections on the performance of image inversion interferometry, including common phase aberrations, interferometer misalignment, and imperfect energy splitting within the interferometer. Our results suggest that image inversion interferometry retains its superiority to direct detection imaging for a wide range of aberrations, so long as pixelated detection is used at the interferometer outputs. This study serves as a guide for the system requirements needed to achieve sensitivities beyond the limits of direct imaging, and further elucidates the robustness of image inversion interferometry to imperfections. These results are critical for the design, construction, and use of future imaging technologies performing at or near the quantum limit of source separation measurements.

摘要

图像反转干涉测量可以测量两个非相干点源在量子极限或接近量子极限处的分离。这项技术有可能改进当前最先进的成像技术,应用范围从微生物学到天文学。然而,实际系统中不可避免的像差和不完美性可能会阻止反转干涉测量为实际应用提供优势。在这里,我们通过数值研究了现实成像系统不完善对图像反转干涉测量性能的影响,包括常见的相位像差、干涉仪失准以及干涉仪内能量分裂不完美。我们的结果表明,只要在干涉仪输出处使用像素化检测,图像反转干涉测量在很大的像差范围内仍然优于直接检测成像。这项研究为实现直接成像极限之外的灵敏度所需的系统要求提供了指导,并进一步阐明了图像反转干涉测量对不完善性的稳健性。这些结果对于在量子极限或接近量子极限进行源分离测量的未来成像技术的设计、构建和使用至关重要。

相似文献

1
Tolerance to aberration and misalignment in a two-point-resolving image inversion interferometer.
Opt Express. 2023 May 8;31(10):16393-16405. doi: 10.1364/OE.487808.
2
Interferometric superlocalization of two incoherent optical point sources.
Opt Express. 2016 Feb 22;24(4):3684-701. doi: 10.1364/OE.24.003684.
3
Fault-tolerant and finite-error localization for point emitters within the diffraction limit.
Opt Express. 2016 Sep 19;24(19):22004-12. doi: 10.1364/OE.24.022004.
4
Pupil inversion Mach-Zehnder interferometry for diffraction-limited optical astronomical imaging.
Opt Express. 2020 Sep 14;28(19):27823-27838. doi: 10.1364/OE.396338.
5
Quantum Limits to Incoherent Imaging are Achieved by Linear Interferometry.
Phys Rev Lett. 2020 Feb 28;124(8):080503. doi: 10.1103/PhysRevLett.124.080503.
6
Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI).
Med Phys. 2021 Mar;48(3):1327-1340. doi: 10.1002/mp.14672. Epub 2021 Jan 10.
7
X-ray bi-prism interferometry-A design study of proposed novel hardware.
Med Phys. 2021 Oct;48(10):6508-6523. doi: 10.1002/mp.15241. Epub 2021 Oct 11.
8
Mode engineering for realistic quantum-enhanced interferometry.
Nat Commun. 2016 Apr 29;7:11411. doi: 10.1038/ncomms11411.
9
Gravitational wave detection using laser interferometry beyond the standard quantum limit.
Philos Trans A Math Phys Eng Sci. 2018 May 28;376(2120). doi: 10.1098/rsta.2017.0289.
10
Enhanced resolution of microscopic objects by image inversion interferometry.
Opt Express. 2011 Dec 19;19(27):26451-62. doi: 10.1364/OE.19.026451.

本文引用的文献

1
EGFR transactivates RON to drive oncogenic crosstalk.
Elife. 2021 Nov 25;10:e63678. doi: 10.7554/eLife.63678.
2
Quantum Hypothesis Testing for Exoplanet Detection.
Phys Rev Lett. 2021 Sep 24;127(13):130502. doi: 10.1103/PhysRevLett.127.130502.
3
Hermite-Gaussian mode detection via convolution neural networks.
J Opt Soc Am A Opt Image Sci Vis. 2019 Jun 1;36(6):936-943. doi: 10.1364/JOSAA.36.000936.
4
Laguerre-Gaussian mode sorter.
Nat Commun. 2019 Apr 26;10(1):1865. doi: 10.1038/s41467-019-09840-4.
5
Nanometer-accuracy distance measurements between fluorophores at the single-molecule level.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4275-4284. doi: 10.1073/pnas.1815826116. Epub 2019 Feb 15.
6
Impact of optical aberrations on axial position determination by photometry.
Nat Methods. 2018 Dec;15(12):989-990. doi: 10.1038/s41592-018-0227-4.
7
Beating Rayleigh's Curse by Imaging Using Phase Information.
Phys Rev Lett. 2017 Feb 17;118(7):070801. doi: 10.1103/PhysRevLett.118.070801. Epub 2017 Feb 15.
8
Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit.
Phys Rev Lett. 2016 Nov 4;117(19):190801. doi: 10.1103/PhysRevLett.117.190801.
9
Fault-tolerant and finite-error localization for point emitters within the diffraction limit.
Opt Express. 2016 Sep 19;24(19):22004-12. doi: 10.1364/OE.24.022004.
10
Interferometric superlocalization of two incoherent optical point sources.
Opt Express. 2016 Feb 22;24(4):3684-701. doi: 10.1364/OE.24.003684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验