Suppr超能文献

具有原子非线性的光学卷积神经网络。

Optical convolutional neural network with atomic nonlinearity.

出版信息

Opt Express. 2023 May 8;31(10):16451-16459. doi: 10.1364/OE.490070.

Abstract

Due to their high degree of parallelism, fast processing speeds and low power consumption, analog optical functional elements offer interesting routes for realizing neuromorphic computer hardware. For instance, convolutional neural networks lend themselves to analog optical implementations by exploiting the Fourier-transform characteristics of suitable designed optical setups. However, the efficient implementation of optical nonlinearities for such neural networks still represents challenges. In this work, we report on the realization and characterization of a three-layer optical convolutional neural network where the linear part is based on a 4f-imaging system and the optical nonlinearity is realized via the absorption profile of a cesium atomic vapor cell. This system classifies the handwritten digital dataset MNIST with 83.96 accuracy, which agrees well with corresponding simulations. Our results thus demonstrate the viability of utilizing atomic nonlinearities in neural network architectures with low power consumption.

摘要

由于其高度的并行性、快速的处理速度和低功耗,模拟光学功能元件为实现神经形态计算机硬件提供了有趣的途径。例如,卷积神经网络通过利用合适设计的光学装置的傅里叶变换特性,适合模拟光学实现。然而,对于这种神经网络,高效地实现光非线性仍然是一个挑战。在这项工作中,我们报告了一个三层光学卷积神经网络的实现和特性,其中线性部分基于 4f 成像系统,而光非线性则通过铯原子蒸汽室的吸收轮廓来实现。该系统以 83.96的准确率对手写数字数据集 MNIST 进行分类,与相应的模拟结果吻合较好。因此,我们的结果表明,利用原子非线性在低功耗的神经网络架构中是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验