Colburn Shane, Chu Yi, Shilzerman Eli, Majumdar Arka
Appl Opt. 2019 Apr 20;58(12):3179-3186. doi: 10.1364/AO.58.003179.
The parallelism of optics and the miniaturization of optical components using nanophotonic structures, such as metasurfaces, present a compelling alternative to electronic implementations of convolutional neural networks. The lack of a low-power optical nonlinearity, however, requires slow and energy-inefficient conversions between the electronic and optical domains. Here, we design an architecture that utilizes a single electrical to optical conversion by designing a free-space optical frontend unit that implements the linear operations of the first layer with the subsequent layers realized electronically. Speed and power analysis of the architecture indicates that the hybrid photonic-electronic architecture outperforms a fully electronic architecture for large image sizes and kernels. Benchmarking of the photonic-electronic architecture on a modified version of AlexNet achieves high classification accuracies on images from the Kaggle's Cats and Dogs challenge and MNIST databases.
光学与使用超表面等纳米光子结构实现光学元件的小型化,为卷积神经网络的电子实现提供了极具吸引力的替代方案。然而,由于缺乏低功耗光学非线性,在电子和光学域之间需要进行缓慢且能量效率低下的转换。在此,我们设计了一种架构,通过设计一个自由空间光学前端单元来实现第一层的线性操作,后续层通过电子方式实现,从而利用单次电光转换。该架构的速度和功耗分析表明,对于大图像尺寸和内核,混合光子 - 电子架构优于全电子架构。在修改后的AlexNet版本上对光子 - 电子架构进行基准测试,在来自Kaggle的猫狗挑战赛和MNIST数据库的图像上实现了高分类准确率。