Suppr超能文献

利用细胞内和细胞外纳米材料工程改造细菌,实现抗肿瘤免疫反应的分级调控。

Bacteria engineered with intracellular and extracellular nanomaterials for hierarchical modulation of antitumor immune responses.

机构信息

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.

University of Science and Technology of China, Hefei, 230026, Anhui, China.

出版信息

Mater Horiz. 2023 Jul 31;10(8):2927-2935. doi: 10.1039/d3mh00249g.

Abstract

Induction of immunogenic cell death (ICD) by hyperthermia can initiate adaptive immune responses, emerging as an attractive strategy for tumor immunotherapy. However, ICD can induce proinflammatory factor interferon-γ (IFN-γ) production, leading to indoleamine 2,3-dioxygenase 1 (IDO-1) activation and an immunosuppressive tumor microenvironment, which dramatically reduces the ICD-triggered immunotherapeutic efficacy. Herein, we developed a bacteria-nanomaterial hybrid system (VNP20009) to systematically modulate the tumor immune microenvironment and improve tumor immunotherapy. Attenuated (VNP20009) that can chemotactically migrate to the hypoxic area of the tumor and repolarize tumor-associated macrophages (TAMs) was employed to intracellularly biosynthesize copper sulfide nanomaterials (CuS NMs) and extracellularly hitchhike NLG919-embedded and glutathione (GSH)-responsive albumin nanoparticles (NB NPs), forming VNP20009. After intravenous injection into B16F1 tumor-bearing mice, VNP20009 could accumulate in tumor tissues and repolarize TAMs from the immunosuppressive M2 to immunostimulatory M1 phenotype and release NLG919 from extracellular NB NPs to inhibit IDO-1 activity. Under further near infrared laser irradiation, intracellular CuS NMs of VNP20009 could photothermally induce ICD including calreticulin (CRT) expression and high mobility group box 1 (HMGB-1) release, promoting intratumoral infiltration of cytotoxic T lymphocytes. Finally, VNP20009 with excellent biocompatibility could systematically augment immune responses and significantly inhibit tumor growth, holding great promise for tumor therapy.

摘要

高热诱导免疫原性细胞死亡(ICD)可引发适应性免疫反应,成为肿瘤免疫治疗的一种有吸引力的策略。然而,ICD 可诱导促炎因子干扰素-γ(IFN-γ)的产生,导致吲哚胺 2,3-双加氧酶 1(IDO-1)的激活和免疫抑制性肿瘤微环境,从而极大地降低了 ICD 触发的免疫治疗效果。在此,我们开发了一种细菌-纳米材料杂化系统(VNP20009),以系统地调节肿瘤免疫微环境并提高肿瘤免疫治疗效果。使用趋化性迁移到肿瘤缺氧区域并使肿瘤相关巨噬细胞(TAMs)重极化的减毒 (VNP20009),在细胞内生物合成硫化铜纳米材料(CuS NMs),并在细胞外搭载 NLG919 嵌入和谷胱甘肽(GSH)响应的白蛋白纳米颗粒(NB NPs),形成 VNP20009。将 VNP20009 静脉注射到 B16F1 荷瘤小鼠体内后,VNP20009 可在肿瘤组织中积累,并将 TAMs 从免疫抑制性 M2 重极化为免疫刺激性 M1 表型,并从细胞外 NB NPs 中释放 NLG919 以抑制 IDO-1 活性。在进一步的近红外激光照射下,VNP20009 中的细胞内 CuS NMs 可以光热诱导 ICD,包括钙网蛋白(CRT)的表达和高迁移率族蛋白 B1(HMGB-1)的释放,促进细胞毒性 T 淋巴细胞在肿瘤内的浸润。最后,具有良好生物相容性的 VNP20009 可以系统地增强免疫反应并显著抑制肿瘤生长,为肿瘤治疗带来了巨大的希望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验