Suppr超能文献

使用田口方法和人工神经网络模型对采用垂直旋转圆柱形铝电极的电凝聚技术去除六价铬进行参数优化。

Parametric optimization of hexavalent chromium removal by electrocoagulation technology with vertical rotating cylindrical aluminum electrodes using Taguchi and ANN model.

作者信息

Kumar Amit, Basu D

机构信息

Department of Civil Engineering, Motilal Nehru National Institute of Technology Allahabd, Prayagraj, 211004 India.

出版信息

J Environ Health Sci Eng. 2023 Apr 28;21(1):255-275. doi: 10.1007/s40201-023-00859-w. eCollection 2023 Jun.

Abstract

This study aims to evaluate the performance of rotating aluminum electrodes in the electrocoagulation reactor for removing hexavalent chromium (Cr from synthetic tannery wastewater. Taguchi and Artificial Neural Network (ANN) based models were developed to obtain the optimum condition for maximum Cr removal. The optimum working condition obtained by Taguchi approach for the maximum Cr removal (94%) was: Initial Cr concentration (Cr ) = 15 mg/L; Current Density (CD) = 14.25 mA/cm; Intial pH = 5; Rotational Speed of Electrode (RSE) = 70 rpm. In contrast, the optimal condition for maximum Cr ions removal (98.83%) obtained from the BR-ANN model was: Cr  = 15 mg/L; CD = 14.36 mA/cm; pHi = 5.2; RSE = 73 rpm. Compared to the Taguchi model, the BR-ANN model outperformed in terms of providing higher Cr removal (+ 4.83%); reduced energy demand (-0.035 KWh/gm Cr remove); lower error function value (χ = -7.9674 and RMSE = -3.5414); and highest R value (0.9991). The data for the conditions 91,007 < Re < 227,517 and Sc = 102.834 were found to fit the equation for the initial Cr concentration of 15 mg/l; Sh = 3.143Re Sc. The Cr removal kinetics was best described by Pseudo 2 Order model, as validated by high R and lower error functions value. The SEM and XRF analysis confirmed that Cr was adsorbed and precipitated along with metal hydroxide sludge. The rotating electrode led to lower SEEC (10.25 kWh/m), as well as maximum Cr removal (98.83%), compared to EC process with stationary electrodes.

摘要

本研究旨在评估旋转铝电极在电凝聚反应器中去除合成制革废水中六价铬(Cr)的性能。基于田口方法和人工神经网络(ANN)开发了模型,以获得最大程度去除Cr的最佳条件。通过田口方法获得的最大Cr去除率(94%)的最佳工作条件为:初始Cr浓度(Cr )=15mg/L;电流密度(CD)=14.25mA/cm²;初始pH=5;电极转速(RSE)=70rpm。相比之下,从BR-ANN模型获得的最大Cr离子去除率(98.83%)的最佳条件为:Cr =15mg/L;CD=14.36mA/cm²;pHi=5.2;RSE=73rpm。与田口模型相比,BR-ANN模型在提供更高的Cr去除率(+4.83%)、降低能源需求(-0.035KWh/gm Cr去除)、更低的误差函数值(χ=-7.9674和RMSE=-3.5414)以及最高的R值(0.9991)方面表现更优。发现条件91,007<Re<227,517和Sc=102.834的数据符合初始Cr浓度为15mg/l的方程;Sh=3.143Re Sc。Cr去除动力学最好用伪二级模型描述,高R值和较低的误差函数值验证了这一点。扫描电子显微镜(SEM)和X射线荧光光谱(XRF)分析证实,Cr与金属氢氧化物污泥一起被吸附和沉淀。与使用固定电极的电凝聚工艺相比,旋转电极导致更低的特定能耗(SEEC)(10.25kWh/m³)以及最大的Cr去除率(98.83%)。

相似文献

2
Electrocoagulation treatment of industrial tannery wastewater employing a modified rotating cylinder electrode reactor.
Chemosphere. 2021 Feb;264(Pt 2):128491. doi: 10.1016/j.chemosphere.2020.128491. Epub 2020 Oct 3.
3
Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network.
J Hazard Mater. 2009 Nov 15;171(1-3):484-90. doi: 10.1016/j.jhazmat.2009.06.025. Epub 2009 Jun 16.
5
The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge.
J Environ Manage. 2017 Sep 15;200:196-203. doi: 10.1016/j.jenvman.2017.05.075. Epub 2017 Jun 1.
6
Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.
J Hazard Mater. 2009 Sep 30;169(1-3):1127-33. doi: 10.1016/j.jhazmat.2009.04.089. Epub 2009 May 3.
9
Taguchi method for optimization of Cr(VI) removal, isotherm, kinetic and thermodynamic studies.
Nucleosides Nucleotides Nucleic Acids. 2025;44(1):16-40. doi: 10.1080/15257770.2024.2308517. Epub 2024 Feb 6.
10
The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology.
J Hazard Mater. 2009 Mar 15;162(2-3):1371-8. doi: 10.1016/j.jhazmat.2008.06.017. Epub 2008 Jun 13.

本文引用的文献

1
Polyaniline-TiO composite photocatalysts for light-driven hexavalent chromium ions reduction.
Sci Bull (Beijing). 2020 Jan 30;65(2):105-112. doi: 10.1016/j.scib.2019.10.020. Epub 2019 Oct 21.
2
Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater.
Chemosphere. 2022 Apr;292:133448. doi: 10.1016/j.chemosphere.2021.133448. Epub 2021 Dec 29.
3
Use of metal-organic framework to remove chromium (VI) from aqueous solutions.
J Environ Health Sci Eng. 2019 Jun 18;17(2):701-709. doi: 10.1007/s40201-019-00385-8. eCollection 2019 Dec.
4
Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes.
J Hazard Mater. 2020 Feb 15;384:121459. doi: 10.1016/j.jhazmat.2019.121459. Epub 2019 Nov 1.
5
The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge.
J Environ Manage. 2017 Sep 15;200:196-203. doi: 10.1016/j.jenvman.2017.05.075. Epub 2017 Jun 1.
7
Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation.
Chemosphere. 2017 Aug;180:379-387. doi: 10.1016/j.chemosphere.2017.04.045. Epub 2017 Apr 14.
9
Image analysis of sludge aggregates obtained at preliminary treatment of sewage.
Water Sci Technol. 2014;70(6):1048-55. doi: 10.2166/wst.2014.332.
10
Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.
Chemosphere. 2013 Jun;92(1):38-44. doi: 10.1016/j.chemosphere.2013.03.007. Epub 2013 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验