Suppr超能文献

智能算法辅助的铝电极电絮凝法净化屠宰废水的模型建立与优化

Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes.

机构信息

Department of Polymer Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria.

Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria.

出版信息

J Environ Manage. 2024 Feb 27;353:120161. doi: 10.1016/j.jenvman.2024.120161. Epub 2024 Jan 29.

Abstract

The removal of turbidity from abattoir wastewater (AWW) by electrocoagulation (EC) was modeled and optimized using Artificial Intelligence (AI) algorithms. Artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), particle swarm optimization (PSO), and genetic algorithms (GA) were the AI tools employed. Five input variables were considered: pH, current intensity, electrolysis time, settling time, and temperature. The ANN model was evaluated using the Levenberg-Marquardt (trainlm) algorithm, while the ANFIS modeling was accomplished using the Sugeno-type FIS. The ANN and ANFIS models demonstrated linear adequacy with the experimental data, with an R value of 0.9993 in both cases. The corresponding statistical error indices were RMSE (ANN = 5.65685E-05; ANFIS = 2.82843E-05), SSE (ANN = 1.60E-07; ANFIS = 3.4E-08), and MSE (ANN = 3.2E-09; ANFIS = 8E-10). The error indices revealed that the ANFIS model had the least performance error and is considered the most reliable of the two. The process optimization performed with GA and PSO considered turbidity removal efficiency, energy requirement, and electrode material loss. An optimal turbidity removal efficiency of 99.39 % was predicted at pH (3.1), current intensity (2 A), electrolysis time (20 min), settling time (50 min), and operating temperature (50 °C). This represents a potential for the delivery of cleaner water without the use of chemicals. The estimated power consumption and the theoretical mass of the aluminium electrode dissolved at the optimum condition were 293.33 kW h/m and 0.2237 g, respectively. The work successfully affirmed the effectiveness of the EC process in the removal of finely divided suspended particles from AWW and demonstrated the suitability of the AI algorithms in the modeling and optimization of the process.

摘要

采用人工智能(AI)算法对屠宰废水(AWW)的电絮凝(EC)去除浊度进行建模和优化。人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)、粒子群优化(PSO)和遗传算法(GA)是所采用的 AI 工具。考虑了五个输入变量:pH 值、电流强度、电解时间、沉淀时间和温度。ANN 模型使用 Levenberg-Marquardt(trainlm)算法进行评估,而 ANFIS 建模使用 Sugeno 型 FIS 完成。ANN 和 ANFIS 模型均与实验数据呈线性拟合,R 值均为 0.9993。相应的统计误差指标为 RMSE(ANN=5.65685E-05;ANFIS=2.82843E-05)、SSE(ANN=1.60E-07;ANFIS=3.4E-08)和 MSE(ANN=3.2E-09;ANFIS=8E-10)。误差指标表明,ANFIS 模型的性能误差最小,被认为是两者中最可靠的模型。GA 和 PSO 进行的过程优化考虑了浊度去除效率、能源需求和电极材料损失。预测在 pH 值(3.1)、电流强度(2 A)、电解时间(20 分钟)、沉淀时间(50 分钟)和操作温度(50°C)下可达到 99.39%的最佳浊度去除效率。这代表了在不使用化学物质的情况下提供更清洁水的潜力。在最佳条件下,估计的功耗和溶解的铝电极的理论质量分别为 293.33kW·h/m 和 0.2237g。该工作成功证实了 EC 过程在去除 AWW 中细小悬浮颗粒方面的有效性,并展示了 AI 算法在该过程建模和优化中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验