文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌细胞膜包覆藤黄酸纳米粒子通过激活树突状细胞有效进行癌症免疫治疗。

Cancer Cell Membrane-Coated Gambogic Acid Nanoparticles for Effective Anticancer Vaccination by Activating Dendritic Cells.

机构信息

Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.

Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People's Republic of China.

出版信息

Int J Nanomedicine. 2023 May 2;18:2261-2273. doi: 10.2147/IJN.S408521. eCollection 2023.


DOI:10.2147/IJN.S408521
PMID:37159807
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10163893/
Abstract

PURPOSE: Recent studies have shown that traditional Chinese medicine (TCM), such as gambogic acid (GA), is involved in the regulation of tumor immune microenvironment and can be combined with other anti-tumor treatment strategies. Here, we used GA as an adjuvant to construct a nano-vaccine to improve the anti-tumor immune response of colorectal cancer (CRC). MATERIALS AND METHODS: We used a previously reported two-step emulsification method to obtain poly (lactic-co-glycolic acid) /GA nanoparticles (PLGA/GA NPs), and then CT26 colon cancer cell membrane (CCM) was used to obtain CCM-PLGA/GA NPs. This novel nano-vaccine, CCM-PLGA/GA NPs, was co-synthesized with GA as an adjuvant and neoantigen provided by CT26 CCM. We further confirmed the stability, tumor targeting, and cytotoxicity of CCM-PLGA/GA NPs. The regulatory effect on the tumor immune microenvironment, the anti-tumor efficacy, and the combined anti-tumor efficacy with anti-PD-1 monoclonal Antibodies (mAbs) of this novel nano-vaccine was also detected in vivo. RESULTS: We successfully constructed the CCM-PLGA/GA NPs. In vitro and in vivo tests showed low biological toxicity, as well as the high tumor-targeting ability of the CCM-PLGA/GA NPs. Besides, we revealed a remarkable effect of CCM-PLGA/GA NPs to activate the maturation of dendritic cells (DCs) and the formation of a positive anti-tumor immune microenvironment. CONCLUSION: This novel nano-vaccine constructed with GA as the adjuvant and CCM providing the tumor antigen can not only directly kill tumors by enhancing the ability of GA to target tumors, but also indirectly kill tumors by regulating tumor immune microenvironment, providing a new strategy for immunotherapy of CRC.

摘要

目的:最近的研究表明,传统中药(TCM),如藤黄酸(GA),参与肿瘤免疫微环境的调节,可以与其他抗肿瘤治疗策略相结合。在这里,我们使用 GA 作为佐剂构建纳米疫苗,以提高结直肠癌(CRC)的抗肿瘤免疫反应。

材料和方法:我们使用先前报道的两步乳化法获得聚(乳酸-共-羟基乙酸)/GA 纳米颗粒(PLGA/GA NPs),然后使用 CT26 结肠癌细胞膜(CCM)获得 CCM-PLGA/GA NPs。这种新型纳米疫苗,CCM-PLGA/GA NPs,与 GA 作为佐剂和 CT26 CCM 提供的新抗原共同合成。我们进一步证实了 CCM-PLGA/GA NPs 的稳定性、肿瘤靶向性和细胞毒性。还在体内检测了这种新型纳米疫苗对肿瘤免疫微环境的调节作用、抗肿瘤疗效以及与抗 PD-1 单克隆抗体(mAbs)的联合抗肿瘤疗效。

结果:我们成功构建了 CCM-PLGA/GA NPs。体外和体内试验表明,CCM-PLGA/GA NPs 具有低生物毒性和高肿瘤靶向能力。此外,我们揭示了 CCM-PLGA/GA NPs 激活树突状细胞(DCs)成熟和形成正向抗肿瘤免疫微环境的显著作用。

结论:这种新型纳米疫苗以 GA 为佐剂和 CCM 提供肿瘤抗原构建,不仅可以通过增强 GA 对肿瘤的靶向能力直接杀伤肿瘤,还可以通过调节肿瘤免疫微环境间接杀伤肿瘤,为 CRC 的免疫治疗提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/f763d3f60944/IJN-18-2261-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/8c9822b190d1/IJN-18-2261-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/83909150768c/IJN-18-2261-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/1564e8545e10/IJN-18-2261-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/4e3fd03a7ab9/IJN-18-2261-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/bff2c65f5297/IJN-18-2261-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/73c337d044b2/IJN-18-2261-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/f763d3f60944/IJN-18-2261-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/8c9822b190d1/IJN-18-2261-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/83909150768c/IJN-18-2261-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/1564e8545e10/IJN-18-2261-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/4e3fd03a7ab9/IJN-18-2261-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/bff2c65f5297/IJN-18-2261-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/73c337d044b2/IJN-18-2261-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134b/10163893/f763d3f60944/IJN-18-2261-g0007.jpg

相似文献

[1]
Cancer Cell Membrane-Coated Gambogic Acid Nanoparticles for Effective Anticancer Vaccination by Activating Dendritic Cells.

Int J Nanomedicine. 2023

[2]
Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment.

Int J Nanomedicine. 2018-8-31

[3]
Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens.

J Exp Clin Cancer Res. 2016-10-26

[4]
Development of a poly(d,l-lactic-co-glycolic acid) nanoparticle formulation of STAT3 inhibitor JSI-124: implication for cancer immunotherapy.

Mol Pharm. 2010-4-5

[5]
DEC-205 receptor targeted poly(lactic-co-glycolic acid) nanoparticles containing Eucommia ulmoides polysaccharide enhances the immune response of foot-and-mouth disease vaccine in mice.

Int J Biol Macromol. 2023-2-1

[6]
Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations.

Adv Drug Deliv Rev. 2011-6-6

[7]
Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches.

J Immunother Cancer. 2022-2

[8]
Microfluidic Sonication To Assemble Exosome Membrane-Coated Nanoparticles for Immune Evasion-Mediated Targeting.

Nano Lett. 2019-10-11

[9]
PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses.

Int J Nanomedicine. 2012-3-15

[10]
Development of a Dendritic Cell/Tumor Cell Fusion Cell Membrane Nano-Vaccine for the Treatment of Ovarian Cancer.

Front Immunol. 2022

引用本文的文献

[1]
Integration of active ingredients from traditional Chinese medicine with nano-delivery systems for tumor immunotherapy.

J Nanobiotechnology. 2025-5-17

[2]
Manganese-based nanoparticles plus gambogic acid targeted hypoxic tumor microenvironment by enhancing ROS generation and provided antitumor treatment and improved immunotherapy.

RSC Adv. 2025-4-11

[3]
An injectable gambogic acid loaded nanocomposite hydrogel enhances antitumor effect by reshaping immunosuppressive tumor microenvironment.

Mater Today Bio. 2025-2-24

[4]
Recent advances in self-targeting natural product-based nanomedicines.

J Nanobiotechnology. 2025-1-20

[5]
Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges.

Mol Cancer. 2025-1-18

[6]
Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: a cancer-catch-cancer strategy in cancer therapy.

Regen Biomater. 2024-11-21

[7]
Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy.

Exploration (Beijing). 2024-3-28

[8]
Novel Strategies for Tumor Treatment: Harnessing ROS-Inducing Active Ingredients from Traditional Chinese Medicine Through Multifunctional Nanoformulations.

Int J Nanomedicine. 2024

[9]
Robust anti-tumor immunity through the integration of targeted lipid nanoparticle-based mRNA nanovaccines with PD-1/PD-L1 blockade.

Mater Today Bio. 2024-6-22

[10]
Progress in the Regulation of Immune Cells in the Tumor Microenvironment by Bioactive Compounds of Traditional Chinese Medicine.

Molecules. 2024-5-17

本文引用的文献

[1]
Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation.

J Immunother Cancer. 2022-10

[2]
Local delivery of gambogic acid to improve anti-tumor immunity against oral squamous cell carcinoma.

J Control Release. 2022-11

[3]
Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy.

J Immunother Cancer. 2022-5

[4]
Bioactive cytomembrane@poly(citrate-peptide)-miRNA365 nanoplatform with immune escape and homologous targeting for colon cancer therapy.

Mater Today Bio. 2022-5-17

[5]
Combination strategies with PD-1/PD-L1 blockade: current advances and future directions.

Mol Cancer. 2022-1-21

[6]
Targeted Anti-Tumor Immunotherapy Using Tumor Infiltrating Cells.

Adv Sci (Weinh). 2021-11

[7]
The Combination of Immune Checkpoint Blockade and Angiogenesis Inhibitors in the Treatment of Advanced Non-Small Cell Lung Cancer.

Front Immunol. 2021

[8]
Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti-Programmed Cell Death-1 in HCC.

Hepatology. 2021-11

[9]
Cancer Cell-Membrane Biomimetic Boron Nitride Nanospheres for Targeted Cancer Therapy.

Int J Nanomedicine. 2021-3-11

[10]
Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy.

Signal Transduct Target Ther. 2021-2-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索