文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射学中的人工智能——超越黑箱

Artificial intelligence in radiology - beyond the black box.

作者信息

Gallée Luisa, Kniesel Hannah, Ropinski Timo, Götz Michael

机构信息

Division of Experimental Radiology, Department for Diagnostic and Interventional Radiology, University Ulm Medical Centre, Ulm, Germany.

Visual Computing, University of Ulm, Germany.

出版信息

Rofo. 2023 Sep;195(9):797-803. doi: 10.1055/a-2076-6736. Epub 2023 May 9.


DOI:10.1055/a-2076-6736
PMID:37160147
Abstract

BACKGROUND: Artificial intelligence is playing an increasingly important role in radiology. However, more and more often it is no longer possible to reconstruct decisions, especially in the case of new and powerful methods from the field of deep learning. The resulting models fulfill their function without the users being able to understand the internal processes and are used as so-called black boxes. Especially in sensitive areas such as medicine, the explainability of decisions is of paramount importance in order to verify their correctness and to be able to evaluate alternatives. For this reason, there is active research going on to elucidate these black boxes. METHOD: This review paper presents different approaches for explainable artificial intelligence with their advantages and disadvantages. Examples are used to illustrate the introduced methods. This study is intended to enable the reader to better assess the limitations of the corresponding explanations when meeting them in practice and strengthen the integration of such solutions in new research projects. RESULTS AND CONCLUSION: Besides methods to analyze black-box models for explainability, interpretable models offer an interesting alternative. Here, explainability is part of the process and the learned model knowledge can be verified with expert knowledge. KEY POINTS: · The use of artificial intelligence in radiology offers many possibilities to provide safer and more efficient medical care. This includes, but is not limited to support during image acquisition and processing or for diagnosis.. · Complex models can achieve high accuracy, but make it difficult to understand data processing.. · If the explainability is already taken into account during the planning of the model, methods can be developed that are powerful and interpretable at the same time.. CITATION FORMAT: · Gallée L, Kniesel H, Ropinski T et al. Artificial intelligence in radiology - beyond the black box. Fortschr Röntgenstr 2023; 195: 797 - 803.

摘要

背景:人工智能在放射学中发挥着越来越重要的作用。然而,越来越难以重构决策过程,尤其是对于深度学习领域的新型强大方法而言。由此产生的模型在运行时用户无法理解其内部过程,被用作所谓的黑箱。特别是在医学等敏感领域,决策的可解释性至关重要,以便验证其正确性并能够评估其他方案。因此,目前正在积极开展研究以阐明这些黑箱。 方法:本文综述了可解释人工智能的不同方法及其优缺点。通过实例来说明所介绍的方法。本研究旨在使读者在实际应用中遇到相应解释时,能更好地评估其局限性,并加强此类解决方案在新研究项目中的整合。 结果与结论:除了分析黑箱模型可解释性的方法外,可解释模型提供了一个有趣的选择。在这里,可解释性是过程的一部分,并且所学的模型知识可以用专家知识进行验证。 关键点:· 在放射学中使用人工智能为提供更安全、更高效的医疗护理提供了许多可能性。这包括但不限于在图像采集和处理过程中提供支持或用于诊断。· 复杂模型可以实现高精度,但难以理解数据处理过程。· 如果在模型规划阶段就考虑到可解释性,则可以开发出既强大又可解释的方法。 引用格式:· Gallée L, Kniesel H, Ropinski T等。放射学中的人工智能——超越黑箱。Fortschr Röntgenstr 2023; 195: 797 - 803。

相似文献

[1]
Artificial intelligence in radiology - beyond the black box.

Rofo. 2023-9

[2]
A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: Limited use of explainable AI?

Eur J Radiol. 2022-12

[3]
Explainability and causability in digital pathology.

J Pathol Clin Res. 2023-7

[4]
Artificial intelligence and explanation: How, why, and when to explain black boxes.

Eur J Radiol. 2024-4

[5]
The radiologist as a physician - artificial intelligence as a way to overcome tension between the patient, technology, and referring physicians - a narrative review.

Rofo. 2024-11

[6]
Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology.

Can J Cardiol. 2022-2

[7]
Interpretable artificial intelligence in radiology and radiation oncology.

Br J Radiol. 2023-10

[8]
Explainable artificial intelligence in emergency medicine: an overview.

Clin Exp Emerg Med. 2023-12

[9]
Causability and explainability of artificial intelligence in medicine.

Wiley Interdiscip Rev Data Min Knowl Discov. 2019

[10]
Medical Informatics in a Tension Between Black-Box AI and Trust.

Stud Health Technol Inform. 2022-1-14

引用本文的文献

[1]
Proto-Caps: interpretable medical image classification using prototype learning and privileged information.

PeerJ Comput Sci. 2025-5-29

[2]
Artificial Intelligence in Orthopedic Surgery: Current Applications, Challenges, and Future Directions.

MedComm (2020). 2025-6-25

[3]
Artificial Intelligence in Senology - Where Do We Stand and What Are the Future Horizons?

Eur J Breast Health. 2024-4-1

[4]
Comparing code-free and bespoke deep learning approaches in ophthalmology.

Graefes Arch Clin Exp Ophthalmol. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索