Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao, Goa, India.
Department of Microbiology, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda-Goa, India.
J Basic Microbiol. 2023 Sep;63(9):996-1006. doi: 10.1002/jobm.202300023. Epub 2023 May 9.
Manganese oxide nanocomposites attract huge attention in various biotechnological fields due to their extensive catalytic properties. This study reports an easy, rapid, and cost-effective method of using the cell lysate of haloarchaeon, Haloferax alexandrinus GUSF-1 for the synthesis of manganese oxide nanoparticles. The reaction between the cell lysate and manganese sulfate resulted in the formation of a dark brown precipitate within 48 h at room temperature. The X-ray diffraction pattern showed the existence of Mn O and MnO phases consistent with the JCPDS card no. (01-075-1560 and 00-050-0866). The dark brown colloidal suspension of MnO -MnO in methanol showed maximum absorption between 220 and 260 nm. The EDX spectrum confirmed the presence of manganese and oxygen. The Transmission electron microscopy revealed the spherical morphology with an average particle size between 30 and 60 nm. The magnetic moment versus magnetic field (MH) curve, at room temperature (300 K) did not saturate even at a high magnetic field (±3T) indicating the paramagnetic nature of the prepared nanocomposite. The Atomic Emission Spectroscopic analysis showed a negligible amount of soluble manganese (0.03 ppm in 50 ppm) in the Mn O -MnO suspension suggesting the maximum stability of the material in the solvent over time. Interstingly, Mn O -MnO nanocomposites evidenced antimicrobial activity in the order of Pseudomonas aeruginosa > Salmonella typhi > Escherichia coli > Proteus vulgaris > Candida albicans > Staphylococcus aureus. Conclusively, this is the first report on the formation of Mn O -MnO nanocomposites using cell lysate of salt pan haloarcheon Haloferax alexandrinus GUSF-1 with antimicrobial potential.
氧化锰纳米复合材料因其广泛的催化性能而在各种生物技术领域引起了极大的关注。本研究报告了一种使用嗜盐古菌 Haloferax alexandrinus GUSF-1 的细胞裂解物合成氧化锰纳米粒子的简单、快速和经济有效的方法。细胞裂解物与硫酸锰之间的反应在室温下 48 小时内导致形成深棕色沉淀。X 射线衍射图谱显示存在 Mn O 和 MnO 相,与 JCPDS 卡片号 (01-075-1560 和 00-050-0866) 一致。甲醇中 MnO-MnO 的深棕色胶体悬浮液在 220 至 260nm 之间显示最大吸收。EDX 光谱证实存在锰和氧。透射电子显微镜显示出球形形态,平均粒径在 30 至 60nm 之间。室温(300K)下的磁矩与磁场(MH)曲线没有饱和,即使在高磁场(±3T)下也没有饱和,表明所制备的纳米复合材料具有顺磁性。原子发射光谱分析显示 MnO-MnO 悬浮液中的可溶性锰含量可忽略不计(50ppm 中 0.03ppm),表明随着时间的推移,该材料在溶剂中的最大稳定性。有趣的是,MnO-MnO 纳米复合材料的抗菌活性顺序为铜绿假单胞菌>伤寒沙门氏菌>大肠杆菌>普通变形杆菌>白色念珠菌>金黄色葡萄球菌。总之,这是首次报道使用盐田嗜盐古菌 Haloferax alexandrinus GUSF-1 的细胞裂解物形成具有抗菌潜力的 MnO-MnO 纳米复合材料。