Department of Physics, College of Science, Sultan Qaboos University, Muscat 123, Oman.
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
Phys Chem Chem Phys. 2023 May 24;25(20):14126-14137. doi: 10.1039/d3cp00715d.
We investigate the role of quantum confinement and photoluminescence (PL) lifetime of photoexcited charge carriers in semiconductor core/shell quantum dots (QDs) PL quenching due to surface modification. Surface modification is controlled by varying the number of dye molecules adsorbed onto the QD shell surface forming QD-dye nanoassemblies. We selected CuInS/ZnS (CIS) and InP/ZnS (InP) core/shell QDs exhibiting relatively weak (664 meV) and strong (1194 meV) confinement potentials for the conduction band electron. Moreover, the difference in the emission mechanism gives rise to a long and short excited state lifetime of CIS ( 290 ns) and InP ( 37 ns) QDs. Dye molecules of different ionic characters (rhodamine 575: zwitterionic and rhodamine 560: cationic) are used as quenchers. A detailed analysis of Stern-Volmer data shows that (i) quenching is generally more pronounced in CIS-dye assemblies as compared to InP-dye assemblies, (ii) dynamic quenching is dominating in all QD-dye assemblies with only a minor contribution from static quenching and (iii) the cationic dye shows a stronger interaction with the QD shell surface than the zwitterionic dye. Observations (i) and (ii) can be explained by the differences in the amplitude of the electronic component of the exciton wavefunction near the dye binding sites in both QDs, which results in the breaking up of the electron-hole pair and favors charge trapping. Observation (iii) can be attributed to the variations in electrostatic interactions between the negatively charged QD shell surface and the cationic and zwitterionic dyes, with the former exhibiting a stronger interaction. Moreover, the long lifetime of CIS QDs facilitates us to easily probe different time scales of the trapping processes and thus differentiate the origins of static and dynamic quenching components that appear in the Stern-Volmer analysis.
我们研究了量子限制和光激发载流子的光致发光 (PL) 寿命在半导体核/壳量子点 (QD) 中的作用,由于表面修饰导致 PL 猝灭。表面修饰通过改变吸附在 QD 壳表面上的染料分子的数量来控制,形成 QD-染料纳米组装体。我们选择了 CuInS/ZnS (CIS) 和 InP/ZnS (InP) 核/壳 QD,它们表现出相对较弱 (664 meV) 和较强 (1194 meV) 的导带电子量子限制势。此外,发射机制的差异导致 CIS (290 ns) 和 InP (37 ns) QD 的激发态寿命较长和较短。我们使用具有不同离子特性的染料分子 (若丹明 575:两性离子和若丹明 560:阳离子) 作为猝灭剂。对 Stern-Volmer 数据的详细分析表明:(i) 与 InP-dye 组装体相比,CIS-dye 组装体中的猝灭通常更为明显;(ii) 所有 QD-dye 组装体中都以动态猝灭为主,仅有少量的静态猝灭;(iii) 阳离子染料与 QD 壳表面的相互作用强于两性离子染料。观察结果 (i) 和 (ii) 可以用两个 QD 中染料结合部位附近激子波函数的电子分量的幅度差异来解释,这导致电子空穴对的破裂,并有利于电荷捕获。观察结果 (iii) 可以归因于带负电荷的 QD 壳表面与阳离子和两性离子染料之间的静电相互作用的变化,其中前者表现出更强的相互作用。此外,CIS QD 的长寿命使我们能够轻松探测不同的俘获过程时间尺度,从而区分出 Stern-Volmer 分析中出现的静态和动态猝灭分量的起源。