Suppr超能文献

强配体控制贵金属纳米结构。

Strong Ligand Control for Noble Metal Nanostructures.

机构信息

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

Department of Chemistry, School of Science, Westlake University, Hangzhou 310023, China.

出版信息

Acc Chem Res. 2023 Jun 20;56(12):1539-1552. doi: 10.1021/acs.accounts.3c00119. Epub 2023 May 10.

Abstract

ConspectusNanosynthesis is the art of creating nanostructures, with on-demand synthesis as the ultimate goal. Noble metal nanoparticles have wide applications, but the available synthetic methods are still limited, often giving nanospheres and symmetrical nanocrystals. The fundamental reason is that the conventional weak ligands are too labile to influence the materials deposition, so the equivalent facets always grow equivalently. Considering that the ligands are the main synthetic handles in colloidal synthesis, our group has been exploring strong ligands for new growth modes, giving a variety of sophisticated nanostructures. The model studies often involve metal deposition on seeds functionalized with a certain strong ligand, so that the uneven distribution of the surface ligands could guide the subsequent deposition.In this Account, we focus on the design principles underlying the new growth modes, summarizing our efforts in this area along with relevant literature works. The basics of ligand control are first revisited. Then, the four major growth modes are summarized as follows: (1) The curvature effects would divert the materials deposition away from the high-curvature tips when the ligands are insufficient. With ligands fully covering the seeds, the sparser ligand packing at the tips would then promote the initial nucleation thereon. (2) The strong ligands may get trapped under the incoming metal layer, thus modulating the interfacial energy of the core-shell interface. The evidence for embedded ligands is discussed, along with examples of Janus nanostructures arising from the synthetic control, including metal-metal, metal-semiconductor, and metal-C systems using a variety of ligands. (3) Active surface growth is an unusual mode with divergent growth rates, so that part of the emerging surface is inhibited, and the growth is focused onto a few active sites. With seeds attached to oxide substrates, the selective deposition at the metal-substrate interface produces ultrathin nanowires. The synthesis can be generally applied to grow Au, Ag, Pd, Pt, and hybrid nanowires, with straight, spiral, or helical structures, and even rapid alteration of segments via electrochemical methods. In contrast, active surface growth for colloidal nanoparticles has to be more carefully controlled. The rich growth phenomena are discussed, highlighting the role of strong ligands, the control of deposition rates, the chiral induction, and the evidence for the active sites. (4) An active site with sparse ligands could also be exploited in etching, where the freshly exposed surface would promote further etching. The result is an unusual sharpening etching mode, in contrast to the conventional rounding mode for minimized surface energy.Colloidal nanosynthesis holds great promise for scalable on-demand synthesis, providing the crucial nanomaterials for future explorations. The strong ligands have delivered powerful synthetic controls, which could be further enhanced with in-depth studies on growth mechanisms and synthetic strategies, as well as functions and properties.

摘要

纳米合成是创造纳米结构的艺术,按需合成是最终目标。贵金属纳米粒子有广泛的应用,但现有的合成方法仍然有限,通常只能得到纳米球和对称的纳米晶体。其根本原因是传统的弱配体太不稳定,无法影响材料的沉积,因此等效面总是以相同的速度生长。考虑到配体是胶体合成中的主要合成控制因素,我们小组一直在探索新的生长模式的强配体,得到了各种复杂的纳米结构。模型研究通常涉及在功能化有一定强配体的种子上进行金属沉积,从而使表面配体的不均匀分布可以指导后续的沉积。在本报告中,我们重点关注新生长模式的设计原则,总结了我们在这方面的努力以及相关文献工作。首先回顾了配体控制的基本原理。然后,总结了以下四种主要的生长模式:(1)当配体不足时,曲率效应会使材料沉积偏离高曲率尖端。当配体完全覆盖种子时,尖端处的配体密度较低,从而促进初始成核。(2)强配体可能被困在进入的金属层下,从而调节核壳界面的界面能。讨论了嵌入配体的证据,以及由合成控制引起的各种 Janus 纳米结构的例子,包括金属-金属、金属-半导体和金属-C 系统,使用了各种配体。(3)活性表面生长是一种具有不同生长速率的不寻常模式,导致部分新出现的表面受到抑制,生长集中在少数几个活性位点上。在种子附着在氧化物衬底上的情况下,在金属-衬底界面处选择性沉积会产生超薄纳米线。该合成方法通常可用于生长 Au、Ag、Pd、Pt 和混合纳米线,具有直线、螺旋或螺旋结构,甚至可以通过电化学方法快速改变段。相比之下,胶体纳米粒子的活性表面生长需要更仔细的控制。讨论了丰富的生长现象,突出了强配体的作用、沉积速率的控制、手性诱导以及活性位点的证据。(4)具有稀疏配体的活性位点也可用于刻蚀,新暴露的表面会促进进一步的刻蚀。结果是一种不寻常的锐化刻蚀模式,与传统的最小化表面能的圆形刻蚀模式形成对比。胶体纳米合成在按需合成方面具有很大的应用前景,为未来的探索提供了关键的纳米材料。强配体提供了强大的合成控制,通过深入研究生长机制和合成策略以及功能和性质,这种控制可以进一步增强。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验